Merge pull request #6108 from haukepetersen/opt_nrf_nrfmin

cpu/nrf5x: ported nrfmin driver to netdev2
This commit is contained in:
Peter Kietzmann 2017-01-10 16:52:54 +01:00 committed by GitHub
commit a8297595e6
28 changed files with 1106 additions and 913 deletions

View File

@ -0,0 +1,3 @@
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif

View File

@ -6,3 +6,7 @@ endif
ifneq (,$(filter saul_default,$(USEMODULE)))
USEMODULE += saul_gpio
endif
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif

View File

@ -33,7 +33,7 @@ extern "C" {
* @{
*/
#define CLOCK_CORECLOCK (16000000U) /* fixed for all NRF51822 */
#define CLOCK_CRYSTAL (0U) /* set to 0: internal RC oscillator
#define CLOCK_CRYSTAL (16U) /* set to 0: internal RC oscillator
16: 16MHz crystal
32: 32MHz crystal */
/** @} */

View File

@ -0,0 +1,3 @@
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif

View File

@ -2,6 +2,12 @@ ifneq (,$(filter saul_default,$(USEMODULE)))
USEMODULE += saul_gpio
endif
ifneq (,$(filter gnrc_netdev_default,$(USEMODULE)))
USEPKG += nordic_softdevice_ble
ifeq (,$(filter nrfmin,$(USEMODULE)))
ifneq (,$(filter gnrc_netdev_default,$(USEMODULE)))
USEPKG += nordic_softdevice_ble
endif
else
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif
endif

View File

@ -9,6 +9,7 @@ FEATURES_PROVIDED += periph_uart
# Various other features (if any)
FEATURES_PROVIDED += cpp
FEATURES_PROVIDED += radio_nrfmin
# The board MPU family (used for grouping by the CI system)
FEATURES_MCU_GROUP = cortex_m4_3

View File

@ -0,0 +1,3 @@
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif

View File

@ -0,0 +1,3 @@
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif

View File

@ -0,0 +1,3 @@
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif

View File

@ -0,0 +1,3 @@
ifneq (,$(filter gnrc_netdev_default netdev_default,$(USEMODULE)))
USEMODULE += nrfmin
endif

View File

@ -4,11 +4,6 @@ MODULE = cpu
# add a list of subdirectories, that should also be build
DIRS = periph $(RIOTCPU)/cortexm_common $(RIOTCPU)/nrf5x_common
# build one of the radio drivers, if enabled
ifneq (,$(filter radio_nrfmin,$(USEMODULE)))
DIRS += radio/nrfmin
endif
# (file triggers compiler bug. see #5775)
SRC_NOLTO += vectors.c

View File

@ -49,6 +49,16 @@ extern "C" {
#endif
/** @} */
/**
* @brief Due to RAM restrictions, we need to limit the default GNRC packet
* buffer size on these CPUs
* @{
*/
#ifndef GNRC_PKTBUF_SIZE
#define GNRC_PKTBUF_SIZE (2048)
#endif
/** @} */
#ifdef __cplusplus
}
#endif

View File

@ -1,101 +0,0 @@
/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup drivers_nrf51822_nrfmin NRF Minimal Radio Driver
* @ingroup drivers_netdev
* @brief Minimal driver for the NRF51822 radio
*
* This driver enables the use of the NRF51822 radio in a IEEE802.15.4 like
* fashion. In the current state, the driver is only be meant to be used with
* the netdev/netapi based network stack, while only being able to communicate
* with other NRF51822 devices using the same driver.
*
* The driver is using a Nordic proprietary physical layer, configured to for a
* bitrate of 2Mbit. The payload length is set to a maximum length of 250 byte.
* The proprietary frame format used has the following format:
*
* byte0 | byte1 - byte2 | byte3 - byte4 | byte5 byte6 | byte7 - byteN
* ------ | ------------- | ------------- | ------------- | -------------
* length | src_addr | dst_addr | proto | payload...
*
* An IEEE802.15.4 like behavior is reflected in the following way: the driver
* configures the radio device to use a fixed 5 byte addressing scheme. On this
* addresses, the first byte is set to a constant value, the same for all
* devices that use this driver. The next two bytes are set to the configured
* PAN ID, hereby simulating the use of PAN IDs. The last two bytes are set to
* a 16-bit short address, simulating IEEE802.15.4 short addresses.
*
* There is no support for EUIDs. Further there is no support for anything else
* than IEEE802.15.4 data frames, so no PAN coordinators, etc.
*
* The driver supports:
* - short address (16-bit)
* - using CPU-ID for default address
* - address broadcast (broadcast address is ff:ff)
* - PAN IDs (0 to 0xffff), PAN ID broadcast is not supported
* - setting of channel (0 to 0x3f)
* - setting of TX power (+4dBm to -20dBm)
* - packet type labeling
* - setting device state (RX, SLEEP)
*
* @{
*
* @file
* @brief Interface definition for the nrfmin NRF51822 radio driver
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef NRFMIN_H_
#define NRFMIN_H_
#include "net/gnrc/netdev.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Default PAN ID used after initialization
*/
#define NRFMIN_DEFAULT_PAN (0x0550)
/**
* @brief Default channel set after initialization
*/
#define NRFMIN_DEFAULT_CHANNEL (1U) /* 2401MHz */
/**
* @brief Default transmission power used
*/
#define NRFMIN_DEFAULT_TXPOWER (0) /* 0dBm */
/**
* @brief Reference to the netdev driver interface
*/
extern const gnrc_netdev_driver_t nrfmin_driver;
/**
* @brief Initialize the NRF51822 radio
*
* The initialization uses static configuration values.
*
* @param[out] dev pointer to the netdev device descriptor
*
* @return 0 on success
* @return -ENODEV if @p dev is invalid
*/
int nrfmin_init(gnrc_netdev_t *dev);
#ifdef __cplusplus
}
#endif
#endif /* NRFMIN_H_ */
/** @} */

View File

@ -1,3 +0,0 @@
MODULE = radio_nrfmin
include $(RIOTBASE)/Makefile.base

View File

@ -1,723 +0,0 @@
/*
* Copyright (C) 2015 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_nrf51822_nrfmin
* @{
*
* @file
* @brief Implementation of the nrfmin NRF51822 minimal radio driver
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include "cpu.h"
#include "mutex.h"
#include "periph_conf.h"
#include "periph/cpuid.h"
#include "nrfmin.h"
#include "net/gnrc.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Driver specific device configuration
* @{
*/
#define CONF_MODE RADIO_MODE_MODE_Nrf_2Mbit
#define CONF_PAYLOAD_LEN (250U)
#define CONF_LEN (8U)
#define CONF_S0 (0U)
#define CONF_S1 (0U)
#define CONF_STATLEN (0U)
#define CONF_BASE_ADDR_LEN (4U)
#define CONF_ENDIAN RADIO_PCNF1_ENDIAN_Big
#define CONF_WHITENING RADIO_PCNF1_WHITEEN_Disabled
#define CONF_CRC_LEN (2U)
#define CONF_CRC_POLY (0x11021)
#define CONF_CRC_INIT (0xf0f0f0)
/** @} */
/**
* @brief Driver specific address configuration
* @{
*/
#define CONF_ADDR_PREFIX0 (0xE7E7E7E7)
#define CONF_ADDR_BCAST (0xffff)
/** @} */
/**
* @brief Driver specific (interrupt) events (not all of them used currently)
* @{
*/
#define ISR_EVENT_RX_START (0x0001)
#define ISR_EVENT_RX_DONE (0x0002)
#define ISR_EVENT_TX_START (0x0004)
#define ISR_EVENT_TX_DONE (0x0008)
#define ISR_EVENT_WRONG_CHKSUM (0x0010)
/** @} */
/**
* @brief Payload types to use in driver specific framed format
*
* We expect the radio to carry either raw link layer data (UNDEF) or network
* layer data, so no need to map transport layer protocols etc...
* @{
*/
#define NRFTYPE_UNDEF (0x01)
#define NRFTYPE_SIXLOWPAN (0x02)
#define NRFTYPE_IPV6 (0x03)
#define NRFTYPE_ICMPV6 (0x04)
/**
* @}
*/
/**
* @brief Possible internal device states
*/
typedef enum {
STATE_OFF, /**< device is powered off */
STATE_IDLE, /**< device is in idle mode */
STATE_RX, /**< device is in receive mode */
STATE_TX, /**< device is transmitting data */
} state_t;
/**
* @brief In-memory structure of a nrfmin radio packet
*/
typedef struct __attribute__((packed)) {
uint8_t length; /**< packet length */
uint8_t src_addr[2]; /**< source address of the packet */
uint8_t dst_addr[2]; /**< destination address */
uint8_t proto; /**< protocol of payload */
uint8_t payload[CONF_PAYLOAD_LEN]; /**< actual payload */
} packet_t;
/**
* @brief Pointer to the MAC layer event callback
*/
static gnrc_netdev_t *_netdev = NULL;
/**
* @brief Current state of the device
*/
static volatile state_t _state = STATE_OFF;
/**
* @brief Address of the device
*/
static uint16_t _addr;
/**
* @brief Transmission buffer
*/
static packet_t _tx_buf;
/**
* @brief Hold the state before sending to return to it afterwards
*/
static state_t _tx_prestate;
/**
* @brief Double receive buffers
*/
static packet_t _rx_buf[2];
/**
* @brief Pointer to the free receive buffer
*/
static volatile int _rx_next = 0;
/*
* Create an internal mapping between NETTYPE and NRFTYPE
*/
static inline gnrc_nettype_t _nrftype_to_nettype(uint8_t nrftype)
{
switch (nrftype) {
#ifdef MODULE_GNRC_SIXLOWPAN
case NRFTYPE_SIXLOWPAN:
return GNRC_NETTYPE_SIXLOWPAN;
#endif
#ifdef MODULE_GNRC_IPV6
case NRFTYPE_IPV6:
return GNRC_NETTYPE_IPV6;
#endif
#ifdef MODULE_GNRC_ICMPV6
case NRFTYPE_ICMPV6:
return GNRC_NETTYPE_ICMPV6;
#endif
default:
return GNRC_NETTYPE_UNDEF;
}
}
static inline uint8_t _nettype_to_nrftype(gnrc_nettype_t nettype)
{
switch (nettype) {
#ifdef MODULE_GNRC_SIXLOWPAN
case GNRC_NETTYPE_SIXLOWPAN:
return NRFTYPE_SIXLOWPAN;
#endif
#ifdef MODULE_GNRC_IPV6
case GNRC_NETTYPE_IPV6:
return NRFTYPE_IPV6;
#endif
#ifdef MODULE_GNRC_ICMPV6
case GNRC_NETTYPE_ICMPV6:
return NRFTYPE_ICMPV6;
#endif
default:
return NRFTYPE_UNDEF;
}
}
/*
* Functions for controlling the radios state
*/
static void _switch_to_idle(void)
{
/* witch to idle state */
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0) {}
_state = STATE_IDLE;
}
static void _switch_to_rx(void)
{
/* set pointer to receive buffer */
NRF_RADIO->PACKETPTR = (uint32_t)&(_rx_buf[_rx_next]);
/* set address */
NRF_RADIO->BASE0 &= ~(0xffff);
NRF_RADIO->BASE0 |= _addr;
/* switch int RX mode */
NRF_RADIO->TASKS_RXEN = 1;
_state = STATE_RX;
}
/*
* Getter and Setter functions
*/
int _get_state(uint8_t *val, size_t max_len)
{
netopt_state_t state;
if (max_len < sizeof(netopt_state_t)) {
return -EOVERFLOW;
}
switch (_state) {
case STATE_OFF:
state = NETOPT_STATE_OFF;
break;
case STATE_IDLE:
state = NETOPT_STATE_SLEEP;
break;
case STATE_RX:
state = NETOPT_STATE_IDLE;
break;
case STATE_TX:
state = NETOPT_STATE_TX;
break;
default:
return -ECANCELED;
}
memcpy(val, &state, sizeof(netopt_state_t));
return sizeof(netopt_state_t);
}
int _set_state(uint8_t *val, size_t len)
{
netopt_state_t state;
if (len != sizeof(netopt_state_t)) {
return -EINVAL;
}
/* get target state */
memcpy(&state, val, len);
/* switch to target state */
switch (state) {
case NETOPT_STATE_SLEEP:
_switch_to_idle();
break;
case NETOPT_STATE_IDLE:
_switch_to_rx();
break;
default:
return -ENOTSUP;
}
return sizeof(netopt_state_t);
}
int _get_address(uint8_t *val, size_t max_len)
{
/* check parameters */
if (max_len < 2) {
return -EOVERFLOW;
}
/* get address */
val[0] = (uint8_t)(_addr >> 8);
val[1] = (uint8_t)(_addr);
return 2;
}
int _set_address(uint8_t *val, size_t len)
{
int is_rx = 0;
/* check parameters */
if (len != 2) {
return -EINVAL;
}
/* keep track of state */
while (_state == STATE_TX) {}
if (_state == STATE_RX) {
is_rx = 1;
_switch_to_idle();
}
/* set address */
_addr = (((uint16_t)val[0]) << 8) | val[1];
NRF_RADIO->BASE0 &= ~(0xffff);
NRF_RADIO->BASE0 |= _addr;
/* restore old state */
if (is_rx) {
_switch_to_rx();
}
return 2;
}
int _get_channel(uint8_t *val, size_t max_len)
{
/* check parameters */
if (max_len < 2) {
return -EOVERFLOW;
}
/* get channel */
val[0] = (0x3f & NRF_RADIO->FREQUENCY);
val[1] = 0;
return 2;
}
int _set_channel(uint8_t *val, size_t len)
{
int is_rx = 0;
/* check parameter */
if (len != 2 || val[0] > 0x3f) {
return -EINVAL;
}
/* remember state */
while (_state == STATE_TX) {}
if (_state == STATE_RX) {
is_rx = 1;
_switch_to_idle();
}
/* set channel */
NRF_RADIO->FREQUENCY = val[0];
/* restore state */
if (is_rx) {
_switch_to_rx();
}
return 2;
}
int _get_pan(uint8_t *val, size_t max_len)
{
/* check parameters */
if (max_len < 2) {
return -EOVERFLOW;
}
/* get PAN ID */
val[0] = (uint8_t)((NRF_RADIO->BASE0 & 0x00ff0000) >> 16);
val[1] = (uint8_t)((NRF_RADIO->BASE0 & 0xff000000) >> 24);
return 2;
}
int _set_pan(uint8_t *val, size_t len)
{
int is_rx = 0;
uint32_t pan;
/* check parameter */
if (len != 2) {
return -EINVAL;
}
/* remember state */
while (_state == STATE_TX) {}
if (_state == STATE_RX) {
is_rx = 1;
_switch_to_idle();
}
/* set new PAN ID */
pan = ((uint32_t)val[1] << 24) | ((uint32_t)val[0] << 16);
NRF_RADIO->BASE0 = pan | _addr;
NRF_RADIO->BASE1 = pan | CONF_ADDR_BCAST;
/* restore state */
if (is_rx) {
_switch_to_rx();
}
return 2;
}
int _get_txpower(uint8_t *val, size_t len)
{
/* check parameters */
if (len < 2) {
return 0;
}
/* get value */
val[0] = NRF_RADIO->TXPOWER;
if (val[0] & 0x80) {
val[1] = 0xff;
}
else {
val[1] = 0x00;
}
return 2;
}
int _set_txpower(uint8_t *val, size_t len)
{
int8_t power;
/* check parameters */
if (len < 2) {
return -EINVAL;
}
/* get TX power value */
power = (int8_t)val[0];
if (power > 2) {
power = 4;
}
else if (power > -2) {
power = 0;
}
else if (power > -6) {
power = -4;
}
else if (power > -10) {
power = -8;
}
else if (power > -14) {
power = -12;
}
else if (power > -18) {
power = -16;
}
else {
power = -20;
}
NRF_RADIO->TXPOWER = power;
return 2;
}
/*
* Radio interrupt routine
*/
void isr_radio(void)
{
msg_t msg;
if (NRF_RADIO->EVENTS_END == 1) {
NRF_RADIO->EVENTS_END = 0;
/* did we just send or receive something? */
if (_state == STATE_RX) {
/* drop packet on invalid CRC */
if (NRF_RADIO->CRCSTATUS != 1) {
return;
}
msg.type = GNRC_NETDEV_MSG_TYPE_EVENT;
msg.content.value = ISR_EVENT_RX_DONE;
msg_send_int(&msg, _netdev->mac_pid);
/* switch buffer */
_rx_next = _rx_next ^ 1;
NRF_RADIO->PACKETPTR = (uint32_t)&(_rx_buf[_rx_next]);
/* go back into receive mode */
NRF_RADIO->TASKS_START = 1;
}
else if (_state == STATE_TX) {
/* disable radio again */
_switch_to_idle();
/* if radio was receiving before, go back into RX state */
if (_tx_prestate == STATE_RX) {
_switch_to_rx();
}
}
}
cortexm_isr_end();
}
/*
* Event handlers
*/
static void _receive_data(void)
{
packet_t *data;
gnrc_pktsnip_t *pkt_head;
gnrc_pktsnip_t *pkt;
gnrc_netif_hdr_t *hdr;
gnrc_nettype_t nettype;
/* only read data if we have somewhere to send it to */
if (_netdev->event_cb == NULL) {
return;
}
/* get pointer to RX data buffer */
data = &(_rx_buf[_rx_next ^ 1]);
/* allocate and fill netif header */
pkt_head = gnrc_pktbuf_add(NULL, NULL, sizeof(gnrc_netif_hdr_t) + 4,
GNRC_NETTYPE_UNDEF);
if (pkt_head == NULL) {
DEBUG("nrfmin: Error allocating netif header on RX\n");
return;
}
hdr = (gnrc_netif_hdr_t *)pkt_head->data;
gnrc_netif_hdr_init(hdr, 2, 2);
hdr->if_pid = _netdev->mac_pid;
gnrc_netif_hdr_set_src_addr(hdr, data->src_addr, 2);
gnrc_netif_hdr_set_dst_addr(hdr, data->dst_addr, 2);
/* allocate and fill payload */
nettype = _nrftype_to_nettype(data->proto);
pkt = gnrc_pktbuf_add(pkt_head, data->payload, data->length - 6, nettype);
if (pkt == NULL) {
DEBUG("nrfmin: Error allocating packet payload on RX\n");
gnrc_pktbuf_release(pkt_head);
return;
}
/* pass on the received packet */
_netdev->event_cb(NETDEV_EVENT_RX_COMPLETE, pkt);
}
/*
* Public interface functions
*/
int nrfmin_init(gnrc_netdev_t *dev)
{
uint8_t cpuid[CPUID_LEN];
uint8_t tmp;
int i;
/* check given device descriptor */
if (dev == NULL) {
return -ENODEV;
}
/* set initial values */
dev->driver = &nrfmin_driver;
dev->event_cb = NULL;
dev->mac_pid = KERNEL_PID_UNDEF;
/* keep a pointer for future reference */
_netdev = dev;
/* power on the NRFs radio */
NRF_RADIO->POWER = 1;
/* load driver specific configuration */
NRF_RADIO->MODE = CONF_MODE;
/* configure variable parameters to default values */
NRF_RADIO->TXPOWER = NRFMIN_DEFAULT_TXPOWER;
NRF_RADIO->FREQUENCY = NRFMIN_DEFAULT_CHANNEL;
/* get default address from CPU ID */
cpuid_get(cpuid);
tmp = 0;
for (i = 0; i < (CPUID_LEN / 2); i++) {
tmp ^= cpuid[i];
}
_addr = ((uint16_t)tmp) << 8;
tmp = 0;
for (; i < CPUID_LEN; i++) {
tmp ^= cpuid[i];
}
_addr |= tmp;
/* pre-configure radio addresses */
NRF_RADIO->PREFIX0 = CONF_ADDR_PREFIX0;
NRF_RADIO->BASE0 = (NRFMIN_DEFAULT_PAN << 16) | _addr;
NRF_RADIO->BASE1 = (NRFMIN_DEFAULT_PAN << 16) | CONF_ADDR_BCAST;
NRF_RADIO->TXADDRESS = 0x00UL; /* always send from address 0 */
NRF_RADIO->RXADDRESSES = 0x03UL; /* listen to addresses 0 and 1 */
/* configure data fields and packet length whitening and endianess */
NRF_RADIO->PCNF0 = (CONF_S1 << RADIO_PCNF0_S1LEN_Pos) |
(CONF_S0 << RADIO_PCNF0_S0LEN_Pos) |
(CONF_LEN << RADIO_PCNF0_LFLEN_Pos);
NRF_RADIO->PCNF1 = (CONF_WHITENING << RADIO_PCNF1_WHITEEN_Pos) |
(CONF_ENDIAN << RADIO_PCNF1_ENDIAN_Pos) |
(CONF_BASE_ADDR_LEN << RADIO_PCNF1_BALEN_Pos) |
(CONF_STATLEN << RADIO_PCNF1_STATLEN_Pos) |
(CONF_PAYLOAD_LEN << RADIO_PCNF1_MAXLEN_Pos);
/* configure CRC unit */
NRF_RADIO->CRCCNF = CONF_CRC_LEN;
NRF_RADIO->CRCPOLY = CONF_CRC_POLY;
NRF_RADIO->CRCINIT = CONF_CRC_INIT;
/* set shortcuts for more efficient transfer */
NRF_RADIO->SHORTS = (1 << RADIO_SHORTS_READY_START_Pos);
/* enable interrupts */
NVIC_SetPriority(RADIO_IRQn, RADIO_IRQ_PRIO);
NVIC_EnableIRQ(RADIO_IRQn);
/* enable END interrupt */
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->INTENSET = (1 << RADIO_INTENSET_END_Pos);
/* put device in receive mode */
_switch_to_rx();
return 0;
}
int _send(gnrc_netdev_t *dev, gnrc_pktsnip_t *pkt)
{
(void)dev;
size_t size;
size_t pos = 0;
uint8_t *dst_addr;
gnrc_netif_hdr_t *hdr;
gnrc_pktsnip_t *payload;
/* check packet */
if (pkt == NULL || pkt->next == NULL) {
DEBUG("nrfmin: Error sending packet: packet incomplete\n");
return -ENOMSG;
}
/* check if payload is withing length bounds */
size = gnrc_pkt_len(pkt->next);
if (size > CONF_PAYLOAD_LEN) {
gnrc_pktbuf_release(pkt);
DEBUG("nrfmin: Error sending packet: payload to large\n");
return -EOVERFLOW;
}
/* get netif header and check address length */
hdr = (gnrc_netif_hdr_t *)pkt->data;
if (hdr->dst_l2addr_len != 2) {
DEBUG("nrfmin: Error sending packet: dest address has invalid size\n");
gnrc_pktbuf_release(pkt);
return -ENOMSG;
}
dst_addr = gnrc_netif_hdr_get_dst_addr(hdr);
DEBUG("nrfmin: Sending packet to %02x:%02x - size %u\n",
dst_addr[0], dst_addr[1], size);
/* wait for any ongoing transmission to finish */
while (_state == STATE_TX) {}
/* write data into TX buffer */
payload = pkt->next;
_tx_buf.length = 6 + size;
_tx_buf.src_addr[0] = (uint8_t)(_addr >> 8);
_tx_buf.src_addr[1] = (uint8_t)(_addr);
_tx_buf.dst_addr[0] = dst_addr[0];
_tx_buf.dst_addr[1] = dst_addr[1];
_tx_buf.proto = _nettype_to_nrftype(payload->type);
while (payload) {
memcpy(&(_tx_buf.payload[pos]), payload->data, payload->size);
pos += payload->size;
payload = payload->next;
}
/* save old state and switch to idle if applicable */
_tx_prestate = _state;
if (_tx_prestate == STATE_RX) {
_switch_to_idle();
}
/* set packet pointer to TX buffer and write destination address */
NRF_RADIO->PACKETPTR = (uint32_t)(&_tx_buf);
NRF_RADIO->BASE0 &= ~(0xffff);
NRF_RADIO->BASE0 |= ((((uint16_t)dst_addr[0]) << 8) | dst_addr[1]);
/* start transmission */
_state = STATE_TX;
NRF_RADIO->TASKS_TXEN = 1;
/* release packet */
gnrc_pktbuf_release(pkt);
return (int)size;
}
int _add_event_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev->event_cb != NULL) {
return -ENOBUFS;
}
dev->event_cb = cb;
return 0;
}
int _rem_event_cb(gnrc_netdev_t *dev, gnrc_netdev_event_cb_t cb)
{
if (dev->event_cb == cb) {
dev->event_cb = NULL;
return 0;
}
return -ENOENT;
}
int _get(gnrc_netdev_t *dev, netopt_t opt, void *value, size_t max_len)
{
(void)dev;
switch (opt) {
case NETOPT_ADDRESS:
return _get_address(value, max_len);
case NETOPT_CHANNEL:
return _get_channel(value, max_len);
case NETOPT_NID:
return _get_pan(value, max_len);
case NETOPT_TX_POWER:
return _get_txpower(value, max_len);
case NETOPT_STATE:
return _get_state(value, max_len);
default:
return -ENOTSUP;
}
}
int _set(gnrc_netdev_t *dev, netopt_t opt, void *value, size_t value_len)
{
(void)dev;
switch (opt) {
case NETOPT_ADDRESS:
return _set_address(value, value_len);
case NETOPT_CHANNEL:
return _set_channel(value, value_len);
case NETOPT_NID:
return _set_pan(value, value_len);
case NETOPT_TX_POWER:
return _set_txpower(value, value_len);
case NETOPT_STATE:
return _set_state(value, value_len);
default:
return -ENOTSUP;
}
}
void _isr_event(gnrc_netdev_t *dev, uint32_t event_type)
{
switch (event_type) {
case ISR_EVENT_RX_DONE:
_receive_data();
break;
default:
/* do nothing */
return;
}
}
/*
* Mapping of netdev interface
*/
const gnrc_netdev_driver_t nrfmin_driver = {
.send_data = _send,
.add_event_callback = _add_event_cb,
.rem_event_callback = _rem_event_cb,
.get = _get,
.set = _set,
.isr_event = _isr_event,
};
//

View File

@ -1,3 +1,8 @@
DIRS = periph
# build one of the radio drivers, if enabled
ifneq (,$(filter nrfmin,$(USEMODULE)))
DIRS += radio/nrfmin
endif
include $(RIOTBASE)/Makefile.base

View File

@ -0,0 +1,237 @@
/*
* Copyright (C) 2015-2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup drivers_nrf5x_nrfmin NRF Minimal Radio Driver
* @ingroup drivers_netdev2
* @brief Minimal driver for the NRF51 radio
*
* This driver uses the nRF5x radio in a proprietary/custom way, defining our
* own custom link layer. This custom link layer resembles some characteristics
* of the IEEE802.15.4 link layer, but is not at all compatible to it.
*
* One key point is, that this custom link layer is only meant to operate
* between nRF5x devices, which let's us make some very nice assumptions:
* - all communicating hosts are little-endian
* -> we define host byte order := network byte order
*
* The driver is using a Nordic proprietary physical layer, configured to a
* bitrate of 2Mbit. The maximum payload length can be freely configured, but
* the maximal supported value is 250 byte (default is 200 byte).
*
* We define the nrfmin link layer to use 16-bit addresses. On the physical
* layer we encode these addresses by putting these addresses into the 2 least
* significant bytes of the supported 5-byte addresses, while setting the other
* 3 bytes to 0xe7.
*
* For out custom link layer, we define our own proprietary link layer format
* (all fields are in host byte order (little endian)):
*
* byte0 | byte1 - byte2 | byte3 - byte4 | byte5 | byte7 - byteN
* ------ | ------------- | ------------- | ----- | -------------
* length | src_addr | dst_addr | proto | payload...
*
* With:
* - length: length of the packet, including the header -> payload len + 6
* - src_addr: 16-bit source address
* - dst_addr: 16-bit destination address
* - proto: type of data transferred (similar to an Ethertype field)
*
* SUMMARY:
* This driver / link layer supports:
* - 16-bit addressing (16-bit)
* -> extract default address from CPU ID
* - broadcast (broadcast address is ff:ff)
* - channels from 0 to 31 [2400MHz to 2524MHz, 4MHz per channel]
* - setting of TX power [+4dBm to -20dBm, in ~4dBm steps]
* - 8-bit packet type/proto field (to be used as seen fit)
* - setting device state (RX, SLEEP)
*
* But so far no support for:
* - link layer ACKs
* - retransmissions
*
* @todo So far the driver uses only a single RX buffer that is locked
* until the data was read/discarded. This can potentially lead to
* a lot of packet loss -> using more than one buffer would help
* here...
*
* @{
*
* @file
* @brief Interface definition for the nrfmin NRF51822 radio driver
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef NRFMIN_H_
#define NRFMIN_H_
#include "net/netdev2.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief nrfmin channel configuration
* @{
*/
#define NRFMIN_CHAN_MIN (0U)
#define NRFMIN_CHAN_DEFAULT (0U) /* 2400MHz */
#define NRFMIN_CHAN_MAX (32)
/** @} */
/**
* @brief Default transmission power used
*/
#define NRFMIN_TXPOWER_DEFAULT (0) /* 0dBm */
/**
* @brief Export the default nrfmin broadcast address
*/
#define NRFMIN_ADDR_BCAST (0xffff)
/**
* @brief Default maximum payload length (must be <= 250)
*/
#ifndef NRFMIN_PAYLOAD_MAX
#define NRFMIN_PAYLOAD_MAX (200U)
#endif
/**
* @brief Export some information on header and packet lengths
* @{
*/
#define NRFMIN_HDR_LEN (sizeof(nrfmin_hdr_t))
#define NRFMIN_PKT_MAX (NRFMIN_HDR_LEN + NRFMIN_PAYLOAD_MAX)
/** @} */
/**
* @brief Header format used for our custom nrfmin link layer
*/
typedef struct __attribute__((packed)) {
uint8_t len; /**< packet length, including this header */
uint16_t src_addr; /**< source address of the packet */
uint16_t dst_addr; /**< destination address */
uint8_t proto; /**< protocol of payload */
} nrfmin_hdr_t;
/**
* @brief In-memory structure of a nrfmin radio packet
*/
typedef union {
struct __attribute__((packed)) {
nrfmin_hdr_t hdr; /**< the nrfmin header */
uint8_t payload[NRFMIN_PAYLOAD_MAX]; /**< actual payload */
} pkt; /**< typed packet access */
uint8_t raw[NRFMIN_PKT_MAX]; /**< raw packet access */
} nrfmin_pkt_t;
/**
* @brief Export the netdev2 device descriptor
*/
extern netdev2_t nrfmin_dev;
/**
* @brief Reference to the netdev driver interface
*/
extern const netdev2_driver_t nrfmin_netdev;
/**
* @brief Setup the device driver's data structures
*/
void nrfmin_setup(void);
/**
* @brief Get the currently active address
* @return the 16-bit node address
*/
uint16_t nrfmin_get_addr(void);
/**
* @brief Set the 16-bit radio address
*
* @param[in] addr address to set
*/
void nrfmin_set_addr(uint16_t addr);
/**
* @brief Get a pseudo 64-bit long address (needed by IPv6 and 6LoWPAN)
*
* As we do not support 64-bit addresses, we just make one up, for this we
* simply return 4 times concatenated the 16-bit address.
*
* @param[out] addr 64-bit pseudo long address, as array of 4 * 16-bit
*/
void nrfmin_get_pseudo_long_addr(uint16_t *addr);
/**
* @brief Get the IID build from the 16-bit node address
*
* @param[out] iid the 64-bit IID, as array of 4 * 16-bit
*/
void nrfmin_get_iid(uint16_t *iid);
/**
* @brief Get the current channel
*
* @return currently active channel
*/
uint16_t nrfmin_get_channel(void);
/**
* @brief Set the active channel
*
* @param[in] chan targeted channel [0-31]
*
* @return sizeof(uint16_t) on success
* @return -EOVERFLOW if channel is not applicable
*/
int nrfmin_set_channel(uint16_t chan);
/**
* @brief Get the current radio state
*
* @return state the radio is currently in
*/
netopt_state_t nrfmin_get_state(void);
/**
* @brief Put the device into the given state
*
* @param[in] val target state
*
* @return sizeof(netopt_state_t) on success
* @return -ENOTSUP if target state is not applicable
*/
int nrfmin_set_state(netopt_state_t val);
/**
* @brief Get the current transmit power
*
* @return transmission power in [dBm]
*/
int16_t nrfmin_get_txpower(void);
/**
* @brief Set the used transmission power
*
* @param[in] power targeted power, in [dBm]
*/
void nrfmin_set_txpower(int16_t power);
#ifdef __cplusplus
}
#endif
#endif /* NRFMIN_H_ */
/** @} */

View File

@ -0,0 +1,48 @@
/*
* Copyright (C) 2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup drivers_nrf5x_nrfmin_gnrc GNRC adapter for nrfmin
* @ingroup drivers_nrf5x_nrfmin
* @brief Minimal driver for the NRF51 radio
*
* @{
*
* @file
* @brief GNRC adapter for nrfmin devices (e.g. nRF5x radios)
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*/
#ifndef NRFMIN_GNRC_H_
#define NRFMIN_GNRC_H_
#include "nrfmin.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Initialize the nrfmin GNRC adapter, also takes care of the nrfmin
* driver setup
*
* As we have never more than 1 nrfmin device on a board, we can make some
* simplifications when it come to allocating device descriptors and adapter
* data structures -> we do this right in the driver/adapter code, so this
* function can be called from auto_init as is, without the need for external
* memory allocation.
*/
void gnrc_netdev2_nrfmin_init(void);
#ifdef __cplusplus
}
#endif
#endif /* NRFMIN_GNRC_H_ */
/** @} */

View File

@ -0,0 +1,9 @@
MODULE = nrfmin
SRC = nrfmin.c
ifneq (,$(filter gnrc_netdev_default,$(USEMODULE)))
SRC += nrfmin_gnrc.c
endif
include $(RIOTBASE)/Makefile.base

View File

@ -0,0 +1,549 @@
/*
* Copyright (C) 2015-2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_nrf5x_nrfmin
* @{
*
* @file
* @brief Implementation of the nrfmin radio driver for nRF51 radios
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
*
* @}
*/
#include <string.h>
#include <errno.h>
#include "cpu.h"
#include "mutex.h"
#include "assert.h"
#include "periph_conf.h"
#include "periph/cpuid.h"
#include "nrfmin.h"
#include "net/netdev2.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Driver specific device configuration
* @{
*/
#define CONF_MODE RADIO_MODE_MODE_Nrf_1Mbit
#define CONF_LEN (8U)
#define CONF_S0 (0U)
#define CONF_S1 (0U)
#define CONF_STATLEN (0U)
#define CONF_BASE_ADDR_LEN (4U)
#define CONF_ENDIAN RADIO_PCNF1_ENDIAN_Big
#define CONF_WHITENING RADIO_PCNF1_WHITEEN_Disabled
#define CONF_CRC_LEN (2U)
#define CONF_CRC_POLY (0x11021)
#define CONF_CRC_INIT (0xf0f0f0)
/** @} */
/**
* @brief Driver specific address configuration
* @{
*/
#define CONF_ADDR_PREFIX0 (0xe7e7e7e7)
#define CONF_ADDR_BASE (0xe7e70000)
#define CONF_ADDR_BCAST (CONF_ADDR_BASE | NRFMIN_ADDR_BCAST)
/** @} */
/**
* @brief We define a pseudo NID for compliance to 6LoWPAN
*/
#define CONF_PSEUDO_NID (0xaffe)
/**
* @brief Driver specific (interrupt) events (not all of them used currently)
* @{
*/
#define ISR_EVENT_RX_START (0x0001)
#define ISR_EVENT_RX_DONE (0x0002)
#define ISR_EVENT_TX_START (0x0004)
#define ISR_EVENT_TX_DONE (0x0008)
#define ISR_EVENT_WRONG_CHKSUM (0x0010)
/** @} */
/**
* @brief Possible internal device states
*/
typedef enum {
STATE_OFF, /**< device is powered off */
STATE_IDLE, /**< device is in idle mode */
STATE_RX, /**< device is in receive mode */
STATE_TX, /**< device is transmitting data */
} state_t;
/**
* @brief Since there can only be 1 nrfmin device, we allocate it right here
*/
netdev2_t nrfmin_dev;
/**
* @brief For faster lookup we remember our own 16-bit address
*/
static uint16_t my_addr;
/**
* @brief We need to keep track of the radio state in SW (-> PAN ID 20)
*
* See nRF51822 PAN ID 20: RADIO State Register is not functional.
*/
static volatile state_t state = STATE_OFF;
/**
* @brief We also remember the 'long-term' state, so we can resume after TX
*/
static volatile state_t target_state = STATE_OFF;
/**
* @brief When sending out data, the data needs to be in one continuous memory
* region. So we need to buffer outgoing data on the driver level.
*/
static nrfmin_pkt_t tx_buf;
/**
* @brief As the device is memory mapped, we need some space to save incoming
* data to.
*
* @todo Improve the RX buffering to at least use double buffering
*/
static nrfmin_pkt_t rx_buf;
/**
* @brief While we listen for incoming data, we lock the RX buffer
*/
static volatile uint8_t rx_lock = 0;
/**
* @brief Set radio into idle (DISABLED) state
*/
static void go_idle(void)
{
/* set device into basic disabled state */
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0) {}
/* also release any existing lock on the RX buffer */
rx_lock = 0;
state = STATE_IDLE;
}
/**
* @brief Set radio into the target state as defined by `target_state`
*
* Trick here is, that the driver can go back to it's previous state after a
* send operation, so it can differentiate if the driver was in DISABLED or in
* RX mode before the send process had started.
*/
static void goto_target_state(void)
{
go_idle();
if ((target_state == STATE_RX) && (rx_buf.pkt.hdr.len == 0)) {
/* set receive buffer and our own address */
rx_lock = 1;
NRF_RADIO->PACKETPTR = (uint32_t)(&rx_buf);
NRF_RADIO->BASE0 = (CONF_ADDR_BASE | my_addr);
/* goto RX mode */
NRF_RADIO->TASKS_RXEN = 1;
state = STATE_RX;
}
if (target_state == STATE_OFF) {
NRF_RADIO->POWER = 0;
state = STATE_OFF;
}
}
void nrfmin_setup(void)
{
nrfmin_dev.driver = &nrfmin_netdev;
nrfmin_dev.event_callback = NULL;
nrfmin_dev.context = NULL;
#ifdef MODULE_NETSTATS_L2
memset(&nrfmin_dev.stats, 0, sizeof(netstats_t));;
#endif
}
uint16_t nrfmin_get_addr(void)
{
return my_addr;
}
void nrfmin_get_pseudo_long_addr(uint16_t *addr)
{
for (int i = 0; i < 4; i++) {
addr[i] = my_addr;
}
}
void nrfmin_get_iid(uint16_t *iid)
{
iid[0] = 0;
iid[1] = 0xff00;
iid[2] = 0x00fe;
iid[3] = my_addr;
}
uint16_t nrfmin_get_channel(void)
{
return (uint16_t)(NRF_RADIO->FREQUENCY >> 2);
}
netopt_state_t nrfmin_get_state(void)
{
switch (state) {
case STATE_OFF: return NETOPT_STATE_OFF;
case STATE_IDLE: return NETOPT_STATE_SLEEP;
case STATE_RX: return NETOPT_STATE_IDLE;
case STATE_TX: return NETOPT_STATE_TX;
default: return NETOPT_STATE_RESET; /* should never show */
}
}
int16_t nrfmin_get_txpower(void)
{
int8_t p = (int8_t)NRF_RADIO->TXPOWER;
if (p < 0) {
return (int16_t)(0xff00 | p);
}
return (int16_t)p;
}
void nrfmin_set_addr(uint16_t addr)
{
my_addr = addr;
goto_target_state();
}
int nrfmin_set_channel(uint16_t chan)
{
if (chan > NRFMIN_CHAN_MAX) {
return -EOVERFLOW;
}
NRF_RADIO->FREQUENCY = (chan << 2);
goto_target_state();