Browse Source

cbor: CBOR implementation for RIOT-OS

This is a malloc-free implementation of the Concise Binary Object
Representation (CBOR) data format for the RIOT-OS.

This implementation mostly stand-alone, and it should be pretty easy to
port to other platforms. We're only using the C STL and some custom
network-related functionaliy which could be easily replaced by depending
on arpa/inet.h.

The CBOR API is straight-forward to use and provides encoding/decoding
functionality for all major C types, such as:
- int
- uint64_t
- int64_t
- float
- double
- char*
- struct tm
- time_t

It is possible to conditionally compile this module via CFLAGS:
- CBOR_NO_SEMANTIC_TAGGING: All semantic-tagging features removed
- CBOR_NO_CTIME: All ctime related features removed
- CBOR_NO_FLOAT: All floating-point related features removed
- CBOR_NO_PRINT: All features depending on printf removed
dev/timer
Kevin Funk 9 years ago
parent
commit
e8141ca5d8
  1. 4
      Makefile.dep
  2. 3
      sys/Makefile
  3. 10
      sys/cbor/Makefile
  4. 1008
      sys/cbor/cbor.c
  5. 368
      sys/include/cbor.h
  6. 2
      tests/unittests/Makefile
  7. 9
      tests/unittests/tests-cbor/Makefile
  8. 1
      tests/unittests/tests-cbor/Makefile.include
  9. 790
      tests/unittests/tests-cbor/tests-cbor.c

4
Makefile.dep

@ -45,6 +45,10 @@ ifneq (,$(filter uart0,$(USEMODULE)))
USEMODULE += posix
endif
ifneq (,$(filter cbor,$(USEMODULE)))
USEMODULE += net_help
endif
ifneq (,$(filter cc110x%,$(USEMODULE)))
USEMODULE += protocol_multiplex
USEMODULE += vtimer

3
sys/Makefile

@ -1,6 +1,9 @@
ifneq (,$(filter auto_init,$(USEMODULE)))
DIRS += auto_init
endif
ifneq (,$(filter cbor,$(USEMODULE)))
DIRS += cbor
endif
ifneq (,$(filter config,$(USEMODULE)))
DIRS += config
endif

10
sys/cbor/Makefile

@ -0,0 +1,10 @@
MODULE = cbor
CFLAGS += -DCBOR_NO_PRINT
ifeq (,$(filter native,$(BOARD)))
# build the minimal subset for non-native
CFLAGS += -DCBOR_NO_FLOAT -DCBOR_NO_PRINT -DCBOR_NO_SEMANTIC_TAGGING
endif
include $(RIOTBASE)/Makefile.base

1008
sys/cbor/cbor.c

File diff suppressed because it is too large Load Diff

368
sys/include/cbor.h

@ -0,0 +1,368 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
* Copyright (C) 2014 Kevin Funk <kfunk@kde.org>
* Copyright (C) 2014 Jana Cavojska <jana.cavojska9@gmail.com>
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cbor
* @{
*/
/**
* @file
* @brief Implementation of a CBOR serializer/deserializer in C
*
* @author Kevin Funk <kfunk@kde.org>
* @author Jana Cavojska <jana.cavojska9@gmail.com>
*
* This is an implementation suited for constrained devices
* Characteristics:
* - No dynamic memory allocation (i.e. no calls to @e malloc, @e free) used throughout the implementation
* - User may allocate static buffers, this implementation uses the space provided by them (cf. @ref cbor_stream_t)
*
* @par Supported types (categorized by major type (MT)):
*
* - Major type 0 (unsigned integer): Full support. Relevant functions:
* - cbor_serialize_int(), cbor_deserialize_int()
* - cbor_serialize_uint64_t(), cbor_deserialize_uint64_t()
*
* - Major type 1 (negative integer): Full support. Relevant functions:
* - cbor_serialize_int(), cbor_deserialize_int()
* - cbor_serialize_int64_t(), cbor_deserialize_int64_t()
*
* - Major type 2 (byte string): Full support. Relevant functions:
* - cbor_serialize_byte_string(), cbor_deserialize_byte_string()
*
* - Major type 3 (unicode string): Basic support (see below). Relevant functions:
* - cbor_serialize_unicode_string(), cbor_deserialize_unicode_string()
*
* - Major type 4 (array of data items): Full support. Relevant functions:
* - cbor_serialize_array(), cbor_deserialize_array()
* - cbor_serialize_indefinite_array(), cbor_deserialize_indefinite_array(), cbor_at_break()
*
* - Major type 5 (map of pairs of data items): Full support. Relevant functions:
* - cbor_serialize_map(), cbor_deserialize_map()
* - cbor_serialize_indefinite_map(), cbor_deserialize_indefinite_map(), cbor_at_break()
*
* - Major type 6 (optional semantic tagging of other major types): Basic support (see below). Relevant functions:
* - cbor_write_tag()
* - cbor_deserialize_date_time()
* - cbor_serialize_date_time()
*
* - Major type 7 (floating-point numbers and values with no content): Basic support (see below). Relevant functions:
* - cbor_serialize_float_half(), cbor_deserialize_float_half()
* - cbor_serialize_float(), cbor_deserialize_float()
* - cbor_serialize_double(), cbor_deserialize_double()
* - cbor_serialize_bool(), cbor_deserialize_bool()
*
* @par Notes about major type 3:
* Since we do not have a standardised C type for representing Unicode code points,
* we just provide API to serialize/deserialize @e char* arrays. The user then
* has to transform that into a meaningful representation
*
* @par Notes about major type 6 (cf. https://tools.ietf.org/html/rfc7049#section-2.4):
* Encoding date and time: date/time strings that follow the standard format described in Section 3.3 of [RFC3339]:
* 2003-12-13T18:30:02Z - supported
* 2003-12-13T18:30:02.25Z - not supported
* 2003-12-13T18:30:02+01:00 - not supported
* 2003-12-13T18:30:02.25+01:00 - not supported
* Since we do not have C types for representing bignums/bigfloats/decimal-fraction
* we do not provide API to serialize/deserialize them at all.
* You can still read out the actual data item behind the tag (via cbor_deserialize_byte_string())
* and interpret it yourself.
*
* @par Notes about major type 7 and simple values (cf. https://tools.ietf.org/html/rfc7049#section-2.3)
* Simple values:
* - 0-19: (Unassigned) - No support
* - 20,21: True, False - Supported (see cbor_serialize_bool(), cbor_deserialize_bool())
* - 22,23: Null, Undefined - No support (what's the use-case?)
* - 24-31: (Reserved) - No support
* - 32-255: (Unassigned) - No support
*
* TODO: API for Indefinite-Length Byte Strings and Text Strings
* (see https://tools.ietf.org/html/rfc7049#section-2.2.2)
*/
#ifndef CBOR_H
#define CBOR_H
#ifndef CBOR_NO_CTIME
/* 'strptime' is only declared when this macro is defined */
#define _XOPEN_SOURCE
#endif
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#ifndef CBOR_NO_CTIME
#include <time.h>
#endif /* CBOR_NO_CTIME */
/**
* @brief Struct containing CBOR-encoded data
*
* A typical usage of CBOR looks like:
* @code
* unsigned char data[1024];
* cbor_stream_t stream;
* cbor_init(&stream, data, sizeof(data));
*
* cbor_serialize_int(&stream, 5);
* (...)
* <data contains CBOR encoded items now>
*
* cbor_destroy(&stream);
* @endcode
*
* @sa cbor_init
* @sa cbor_clear
* @sa cbor_destroy
*/
typedef struct cbor_stream_t {
/* Array containing CBOR encoded data */
unsigned char *data;
/* Size of the array */
size_t size;
/* Index to the next free byte */
size_t pos;
} cbor_stream_t;
/**
* Initialize cbor struct
*
* @note Does *not* take ownership of @p buffer
*
* @param buffer The buffer used for storing CBOR-encoded data
* @param size The size of buffer @p buffer
*/
void cbor_init(cbor_stream_t *stream, unsigned char *buffer, size_t size);
/**
* Clear cbor struct
*
* Sets pos to zero
*/
void cbor_clear(cbor_stream_t *stream);
/**
* Destroy the cbor struct
*
* @note Does *not* free data
*/
void cbor_destroy(cbor_stream_t *stream);
#ifndef CBOR_NO_PRINT
/**
* Print @p stream in hex representation
*/
void cbor_stream_print(const cbor_stream_t *stream);
/**
* Decode CBOR from @p stream
*
* This method interprets the data and prints each item in its natural representation
*
* Example output:
* @code
* Data:
* (int, 1)
* (bool, 1)
* (float, 1.099609)
* (tag: 0, date/time string: "Mon Jul 14 19:07:40 2014")
* (tag: 1, date/time epoch: 1405357660)
* @endcode
*/
void cbor_stream_decode(cbor_stream_t *stream);
#endif /* CBOR_NO_PRINT */
size_t cbor_serialize_int(cbor_stream_t *s, int val);
size_t cbor_deserialize_int(const cbor_stream_t *stream, size_t offset, int *val);
size_t cbor_serialize_uint64_t(cbor_stream_t *s, uint64_t val);
size_t cbor_deserialize_uint64_t(const cbor_stream_t *stream, size_t offset, uint64_t *val);
size_t cbor_serialize_int64_t(cbor_stream_t *s, int64_t val);
size_t cbor_deserialize_int64_t(const cbor_stream_t *stream, size_t offset, int64_t *val);
size_t cbor_serialize_bool(cbor_stream_t *s, bool val);
size_t cbor_deserialize_bool(const cbor_stream_t *stream, size_t offset, bool *val);
#ifndef CBOR_NO_FLOAT
size_t cbor_serialize_float_half(cbor_stream_t *s, float val);
size_t cbor_deserialize_float_half(const cbor_stream_t *stream, size_t offset, float *val);
size_t cbor_serialize_float(cbor_stream_t *s, float val);
size_t cbor_deserialize_float(const cbor_stream_t *stream, size_t offset, float *val);
size_t cbor_serialize_double(cbor_stream_t *s, double val);
size_t cbor_deserialize_double(const cbor_stream_t *stream, size_t offset, double *val);
#endif /* CBOR_NO_FLOAT */
size_t cbor_serialize_byte_string(cbor_stream_t *s, const char *val);
/**
* Deserialize bytes from @p stream to @p val
*
* @param val Pointer to destination array
* @param length Length of destination array
* @return Number of bytes written into @p val
*/
size_t cbor_deserialize_byte_string(const cbor_stream_t *stream, size_t offset, char *val, size_t length);
size_t cbor_serialize_unicode_string(cbor_stream_t *s, const char *val);
/**
* Deserialize unicode string from @p stream to @p val
*
* @param val Pointer to destination array
* @param length Length of destination array
* @return Number of bytes written into @p val
*/
size_t cbor_deserialize_unicode_string(const cbor_stream_t *stream, size_t offset, char *val, size_t length);
/**
* Serialize array of length @p array_length
*
* Basic usage:
* @code
* cbor_serialize_array(&stream, 2); // array of length 2 follows
* cbor_serialize_int(&stream, 1)); // write item 1
* cbor_serialize_int(&stream, 2)); // write item 2
* @endcode
*
* @note You have to make sure to serialize the correct amount of items.
* If you exceed the length @p array_length, items will just be appened as normal
*
* @param array_length Length of the array of items which follows
*
* @return Number of bytes written to stream @p s
*/
size_t cbor_serialize_array(cbor_stream_t *s, size_t array_length);
/**
* Deserialize array of items
*
* Basic usage:
* @code
* size_t array_length;
* size_t offset = cbor_deserialize_array(&stream, 0, &array_length); // read out length of the array
* int i1, i2;
* offset += cbor_deserialize_int(&stream, offset, &i1); // read item 1
* offset += cbor_deserialize_int(&stream, offset, &i2); // read item 2
* @endcode
*
* @param array_length Where the array length is stored
*/
size_t cbor_deserialize_array(const cbor_stream_t *s, size_t offset, size_t *array_length);
size_t cbor_serialize_array_indefinite(cbor_stream_t *s);
size_t cbor_deserialize_array_indefinite(const cbor_stream_t *s, size_t offset);
/**
* Serialize map of length @p map_length
*
* Basic usage:
* @code
* cbor_serialize_map(&stream, 2); // map of length 2 follows
* cbor_serialize_int(&stream, 1)); // write key 1
* cbor_serialize_byte_string(&stream, "1")); // write value 1
* cbor_serialize_int(&stream, 2)); // write key 2
* cbor_serialize_byte_string(&stream, "2")); // write value 2
* @endcode
*
* @param map_length Length of the map of items which follows
*/
size_t cbor_serialize_map(cbor_stream_t *s, size_t map_length);
/**
* Deserialize map of items
*
* Basic usage:
* @code
* size_t map_length;
* size_t offset = cbor_deserialize_map(&stream, 0, &map_length); // read out length of the map
* int key1, key1;
* char value1[8], value2[8];
* offset += cbor_deserialize_int(&stream, offset, &key1); // read key 1
* offset += cbor_deserialize_byte_string(&stream, offset, value1, sizeof(value)); // read value 1
* offset += cbor_deserialize_int(&stream, offset, &key2); // read key 2
* offset += cbor_deserialize_byte_string(&stream, offset, value2, sizeof(value)); // read value 2
* @endcode
*
* @param array_length Where the array length is stored
*/
size_t cbor_deserialize_map(const cbor_stream_t *s, size_t offset, size_t *map_length);
size_t cbor_serialize_map_indefinite(cbor_stream_t *s);
size_t cbor_deserialize_map_indefinite(const cbor_stream_t *s, size_t offset);
#ifndef CBOR_NO_SEMANTIC_TAGGING
#ifndef CBOR_NO_CTIME
/**
* Serialize date and time
*
* Basic usage:
* @code
* struct tm val;
* val.tm_year = 114;
* val.tm_mon = 6;
* val.tm_mday = 1;
* val.tm_hour = 15;
* val.tm_min = 0;
* val.tm_sec = 0;
* mktime(&val);
* cbor_serialize_date_time(&stream, &val);
* @endcode
*
* @param val tm struct containing the date/time info to be encoded
*/
size_t cbor_serialize_date_time(cbor_stream_t *stream, struct tm *val);
/**
* Deserialize date and time
*
* Basic usage:
* @code
* struct tm val;
* cbor_deserialize_date_time(&stream, 0, &val);
* @endcode
*
* @param val tm struct where the decoded date/time will be stored
*/
size_t cbor_deserialize_date_time(const cbor_stream_t *stream, size_t offset, struct tm *val);
size_t cbor_serialize_date_time_epoch(cbor_stream_t *stream, time_t val);
size_t cbor_deserialize_date_time_epoch(const cbor_stream_t *stream, size_t offset, time_t *val);
#endif /* CBOR_NO_CTIME */
/**
* Write a tag to give the next CBOR item additional semantics
*
* Also see https://tools.ietf.org/html/rfc7049#section-2.4 (Optional Tagging of Items)
*/
size_t cbor_write_tag(cbor_stream_t *s, unsigned char tag);
/**
* Whether we are at a tag symbol in stream @p s at offset @p offset
*
* @return True in case there is a tag symbol at the current offset
*/
bool cbor_at_tag(const cbor_stream_t *s, size_t offset);
/**
* Write a break symbol at the current offset in stream @p s
*
* Used for marking the end of indefinite length CBOR items
*/
#endif /* CBOR_NO_SEMANTIC_TAGGING */
size_t cbor_write_break(cbor_stream_t *s);
/**
* Whether we are at a break symbol in stream @p s at offset @p offset
*
* @return True in case the there is a break symbol at the current offset
*/
bool cbor_at_break(const cbor_stream_t *s, size_t offset);
/**
* Whether we are at the end of the stream @p s at offset @p offset
*
* Useful for abort conditions in loops while deserializing CBOR items
*
* @return True in case @p offset marks the end of the stream
*/
bool cbor_at_end(const cbor_stream_t *s, size_t offset);
#endif
/** @} */

2
tests/unittests/Makefile

@ -1,6 +1,8 @@
APPLICATION = unittests
include ../Makefile.tests_common
BOARD_INSUFFICIENT_RAM := chronos redbee-econotag stm32f0discovery
USEMODULE += embunit
INCLUDES += -I$(RIOTBASE)/tests/unittests/embunit

9
tests/unittests/tests-cbor/Makefile

@ -0,0 +1,9 @@
MODULE = tests-cbor
CFLAGS += -DCBOR_NO_PRINT
ifeq (,$(filter native,$(BOARD)))
CFLAGS += -DCBOR_NO_FLOAT -DCBOR_NO_PRINT -DCBOR_NO_SEMANTIC_TAGGING
endif
include $(RIOTBASE)/Makefile.base

1
tests/unittests/tests-cbor/Makefile.include

@ -0,0 +1 @@
USEMODULE += cbor

790
tests/unittests/tests-cbor/tests-cbor.c

@ -0,0 +1,790 @@
/*
* Copyright (C) 2014 Freie Universität Berlin
* Copyright (C) 2014 Kevin Funk <kfunk@kde.org>
* Copyright (C) 2014 Jana Cavojska <jana.cavojska9@gmail.com>
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @author Kevin Funk <kfunk@kde.org>
* @author Jana Cavojska <jana.cavojska9@gmail.com>
*/
#include "../unittests.h"
#include "bitarithm.h"
#include "cbor.h"
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#ifndef CBOR_NO_CTIME
#include <time.h>
#endif /* CBOR_NO_CTIME */
static void my_cbor_print(const cbor_stream_t *stream)
{
#ifndef CBOR_NO_PRINT
cbor_stream_print(stream);
#else
printf("<no print support>");
#endif
}
#define CBOR_CHECK_SERIALIZED(stream, expected_value, expected_value_size) do { \
if (memcmp(stream.data, expected_value, expected_value_size) != 0) { \
printf("\n"); \
printf(" CBOR encoded data: "); my_cbor_print(&stream); printf("\n"); \
cbor_stream_t tmp = {expected_value, expected_value_size, expected_value_size}; \
printf(" Expected data : "); my_cbor_print(&tmp); printf("\n"); \
TEST_FAIL("Test failed"); \
} \
} while(0)
#define CBOR_CHECK_DESERIALIZED(expected_value, actual_value, comparator_function) do { \
TEST_ASSERT(comparator_function(expected_value, actual_value)); \
} while(0)
/* Macro for checking PODs (int, float, ...) */
#define CBOR_CHECK(type, function_suffix, stream, input, expected_value, comparator) do { \
type buffer; \
unsigned char data[] = expected_value; \
cbor_clear(&stream); \
TEST_ASSERT(cbor_serialize_##function_suffix(&stream, input)); \
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data)); \
cbor_stream_t tmp = {data, sizeof(data), sizeof(data)}; \
TEST_ASSERT(cbor_deserialize_##function_suffix(&tmp, 0, &buffer)); \
CBOR_CHECK_DESERIALIZED(input, buffer, comparator); \
} while(0)
#define HEX_LITERAL(...) {__VA_ARGS__}
/* BEGIN: Comparator functions */
#define EQUAL_INT(a, b) \
(a == b)
#define EQUAL_FLOAT(a, b) ( \
(isinf(a) && isinf(b)) || \
(isnan(a) && isnan(b)) || \
(fabs(a - b) < 0.00001))
#define EQUAL_STRING(a, b) \
(strcmp(a, b) == 0)
#define EQUAL_DATE_TIME(a, b) ( \
(a.tm_isdst == b.tm_isdst) && \
(a.tm_yday == b.tm_yday) && \
(a.tm_wday == b.tm_wday) && \
(a.tm_year == b.tm_year) && \
(a.tm_mon == b.tm_mon) && \
(a.tm_mday == b.tm_mday) && \
(a.tm_hour == b.tm_hour) && \
(a.tm_min == b.tm_min) && \
(a.tm_sec == b.tm_sec))
/* END: Comparator functions */
#ifndef INFINITY
#define INFINITY (1.0/0.0)
#endif
#ifndef NAN
#define NAN (0.0/0.0)
#endif
static unsigned char stream_data[1024];
cbor_stream_t stream = {stream_data, sizeof(stream_data), 0};
cbor_stream_t empty_stream = {NULL, 0, 0}; /* stream that is not large enough */
unsigned char invalid_stream_data[] = {0x40}; /* empty string encoded in CBOR */
cbor_stream_t invalid_stream = {invalid_stream_data, sizeof(invalid_stream_data),
sizeof(invalid_stream_data)
};
static void setUp(void)
{
cbor_clear(&stream);
}
static void tearDown(void)
{
}
static void test_int(void)
{
/* positive values */
CBOR_CHECK(int, int, stream, 0, HEX_LITERAL(0x00), EQUAL_INT);
CBOR_CHECK(int, int, stream, 23, HEX_LITERAL(0x17), EQUAL_INT);
CBOR_CHECK(int, int, stream, 24, HEX_LITERAL(0x18, 0x18), EQUAL_INT);
CBOR_CHECK(int, int, stream, 0xff, HEX_LITERAL(0x18, 0xff), EQUAL_INT);
CBOR_CHECK(int, int, stream, 0xff + 1, HEX_LITERAL(0x19, 0x01, 0x00), EQUAL_INT);
CBOR_CHECK(int, int, stream, 0xffff, HEX_LITERAL(0x19, 0xff, 0xff), EQUAL_INT);
CBOR_CHECK(int, int, stream, 0xffff + 1,
HEX_LITERAL(0x1a, 0x00, 0x01, 0x00, 0x00), EQUAL_INT);
#if ARCH_32_BIT
CBOR_CHECK(int, int, stream, 0x7fffffff,
HEX_LITERAL(0x1a, 0x7f, 0xff, 0xff, 0xff), EQUAL_INT);
#endif
/* negative values */
CBOR_CHECK(int, int, stream, -1, HEX_LITERAL(0x20), EQUAL_INT);
CBOR_CHECK(int, int, stream, -24, HEX_LITERAL(0x37), EQUAL_INT);
CBOR_CHECK(int, int, stream, -25, HEX_LITERAL(0x38, 0x18), EQUAL_INT);
CBOR_CHECK(int, int, stream, -0xff - 1, HEX_LITERAL(0x38, 0xff), EQUAL_INT);
CBOR_CHECK(int, int, stream, -0xff - 2, HEX_LITERAL(0x39, 0x01, 0x00), EQUAL_INT);
CBOR_CHECK(int, int, stream, -0xffff - 1, HEX_LITERAL(0x39, 0xff, 0xff), EQUAL_INT);
CBOR_CHECK(int, int, stream, -0xffff - 2,
HEX_LITERAL(0x3a, 0x00, 0x01, 0x00, 0x00), EQUAL_INT);
#if ARCH_32_BIT
CBOR_CHECK(int, int, stream, -0x7fffffff - 1,
HEX_LITERAL(0x3a, 0x7f, 0xff, 0xff, 0xff), EQUAL_INT);
#endif
}
static void test_uint64_t(void)
{
CBOR_CHECK(uint64_t, uint64_t, stream, 0x0,
HEX_LITERAL(0x00), EQUAL_INT);
CBOR_CHECK(uint64_t, uint64_t, stream, 0xff,
HEX_LITERAL(0x18, 0xff), EQUAL_INT);
CBOR_CHECK(uint64_t, uint64_t, stream, 0xffff,
HEX_LITERAL(0x19, 0xff, 0xff), EQUAL_INT);
CBOR_CHECK(uint64_t, uint64_t, stream, 0xffffffffull,
HEX_LITERAL(0x1a, 0xff, 0xff, 0xff, 0xff), EQUAL_INT);
CBOR_CHECK(uint64_t, uint64_t, stream, 0xffffffffffffffffull,
HEX_LITERAL(0x1b, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff), EQUAL_INT);
}
static void test_int_invalid(void)
{
{
/* check writing to stream that is not large enough */
/* basically tests internal 'encode_int' function */
cbor_stream_t stream;
cbor_init(&stream, 0, 0);
/* check each possible branch in 'encode_int' */
/* (value in first byte, uint8 follows, uint16 follows, uint64 follows) */
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_int(&stream, 0));
TEST_ASSERT_EQUAL_INT(0, stream.pos);
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_int(&stream, 24));
TEST_ASSERT_EQUAL_INT(0, stream.pos);
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_int(&stream, 0xff + 1));
TEST_ASSERT_EQUAL_INT(0, stream.pos);
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_int(&stream, 0xffff + 1));
TEST_ASSERT_EQUAL_INT(0, stream.pos);
}
{
/* check reading from stream that contains other type of data */
int val_int = 0;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_int(&invalid_stream, 0, &val_int));
}
}
static void test_uint64_t_invalid(void)
{
{
cbor_stream_t stream;
cbor_init(&stream, 0, 0);
/* let's do this for 'cbor_serialize_int64_t', too */
/* this uses 'encode_int' internally, as well, so let's just test if the */
/* 'cbor_serialize_int64_t' wrapper is sane */
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_uint64_t(&stream, 0));
TEST_ASSERT_EQUAL_INT(0, stream.pos);
}
{
/* check reading from stream that contains other type of data */
unsigned char data[] = {0x40}; /* empty string encoded in CBOR */
cbor_stream_t stream = {data, 1, 1};
uint64_t val_uint64_t = 0;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_uint64_t(&stream, 0, &val_uint64_t));
}
}
static void test_int64_t(void)
{
CBOR_CHECK(int64_t, int64_t, stream, -1,
HEX_LITERAL(0x20), EQUAL_INT);
CBOR_CHECK(int64_t, int64_t, stream, -0xff - 1,
HEX_LITERAL(0x38, 0xff), EQUAL_INT);
CBOR_CHECK(int64_t, int64_t, stream, -0xffff - 1,
HEX_LITERAL(0x39, 0xff, 0xff), EQUAL_INT);
CBOR_CHECK(int64_t, int64_t, stream, -0xffffffffll - 1,
HEX_LITERAL(0x3a, 0xff, 0xff, 0xff, 0xff), EQUAL_INT);
CBOR_CHECK(int64_t, int64_t, stream, -0x7fffffffffffffffll - 1,
HEX_LITERAL(0x3b, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff), EQUAL_INT);
}
static void test_int64_t_invalid(void)
{
{
/* check writing to stream that is not large enough (also see test_major_type_0_invalid) */
cbor_stream_t stream;
cbor_init(&stream, 0, 0);
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_int64_t(&stream, 0));
TEST_ASSERT_EQUAL_INT(0, stream.pos);
}
{
/* check reading from stream that contains other type of data */
unsigned char data[] = {0x40}; /* empty string encoded in CBOR */
cbor_stream_t stream = {data, 1, 1};
int64_t val = 0;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_int64_t(&stream, 0, &val));
}
}
static void test_byte_string(void)
{
char buffer[128];
{
const char *input = "";
unsigned char data[] = {0x40};
TEST_ASSERT(cbor_serialize_byte_string(&stream, input));
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
TEST_ASSERT(cbor_deserialize_byte_string(&stream, 0, buffer, sizeof(buffer)));
CBOR_CHECK_DESERIALIZED(input, buffer, EQUAL_STRING);
}
cbor_clear(&stream);
{
const char *input = "a";
unsigned char data[] = {0x41, 0x61};
TEST_ASSERT(cbor_serialize_byte_string(&stream, input));
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
TEST_ASSERT(cbor_deserialize_byte_string(&stream, 0, buffer, sizeof(buffer)));
CBOR_CHECK_DESERIALIZED(input, buffer, EQUAL_STRING);
}
}
static void test_byte_string_invalid(void)
{
{
/* check writing to stream that is not large enough */
cbor_stream_t stream;
cbor_init(&stream, 0, 0);
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_byte_string(&stream, "foo"));
cbor_destroy(&stream);
}
}
static void test_unicode_string(void)
{
char buffer[128];
{
const char *input = "";
unsigned char data[] = {0x60};
TEST_ASSERT(cbor_serialize_unicode_string(&stream, input));
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
TEST_ASSERT(cbor_deserialize_unicode_string(&stream, 0, buffer, sizeof(buffer)));
CBOR_CHECK_DESERIALIZED(input, buffer, EQUAL_STRING);
}
cbor_clear(&stream);
{
const char *input = "a";
unsigned char data[] = {0x61, 0x61};
TEST_ASSERT(cbor_serialize_unicode_string(&stream, input));
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
TEST_ASSERT(cbor_deserialize_unicode_string(&stream, 0, buffer, sizeof(buffer)));
CBOR_CHECK_DESERIALIZED(input, buffer, EQUAL_STRING);
}
}
static void test_unicode_string_invalid(void)
{
{
/* check writing to stream that is not large enough */
cbor_stream_t stream;
cbor_init(&stream, 0, 0);
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_unicode_string(&stream, "foo"));
cbor_destroy(&stream);
}
}
static void test_array(void)
{
/* uniform types */
{
/* serialization */
TEST_ASSERT(cbor_serialize_array(&stream, 2));
TEST_ASSERT(cbor_serialize_int(&stream, 1));
TEST_ASSERT(cbor_serialize_int(&stream, 2));
unsigned char data[] = {0x82, 0x01, 0x02};
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
/* deserialization */
size_t array_length;
size_t offset = cbor_deserialize_array(&stream, 0, &array_length);
TEST_ASSERT_EQUAL_INT(2, array_length);
int i;
offset += cbor_deserialize_int(&stream, offset, &i);
TEST_ASSERT_EQUAL_INT(1, i);
offset += cbor_deserialize_int(&stream, offset, &i);
TEST_ASSERT_EQUAL_INT(2, i);
}
cbor_clear(&stream);
/* mixed types */
{
TEST_ASSERT(cbor_serialize_array(&stream, 2));
TEST_ASSERT(cbor_serialize_int(&stream, 1));
TEST_ASSERT(cbor_serialize_byte_string(&stream, "a"));
unsigned char data[] = {0x82, 0x01, 0x41, 0x61};
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
/* deserialization */
size_t array_length;
size_t offset = cbor_deserialize_array(&stream, 0, &array_length);
TEST_ASSERT(offset);
TEST_ASSERT_EQUAL_INT(2, array_length);
int i;
offset += cbor_deserialize_int(&stream, offset, &i);
TEST_ASSERT_EQUAL_INT(1, i);
char buffer[1024];
offset += cbor_deserialize_byte_string(&stream, offset, buffer, sizeof(buffer));
TEST_ASSERT_EQUAL_STRING("a", buffer);
}
}
static void test_array_indefinite(void)
{
{
/* serialization */
TEST_ASSERT(cbor_serialize_array_indefinite(&stream));
TEST_ASSERT(cbor_serialize_int(&stream, 1));
TEST_ASSERT(cbor_serialize_int(&stream, 2));
TEST_ASSERT(cbor_write_break(&stream));
unsigned char data[] = {0x9f, 0x01, 0x02, 0xff};
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
/* deserialization */
size_t offset = cbor_deserialize_array_indefinite(&stream, 0);
int count = 0;
while (!cbor_at_break(&stream, offset)) {
int val;
size_t read_bytes = cbor_deserialize_int(&stream, offset, &val);
TEST_ASSERT(read_bytes);
offset += read_bytes;
++count;
}
TEST_ASSERT_EQUAL_INT(2, count);
TEST_ASSERT(cbor_at_end(&stream, offset));
}
}
static void test_array_invalid(void)
{
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_array(&empty_stream, 1));
size_t array_length;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_array(&invalid_stream, 0, &array_length));
}
static void test_map(void)
{
{
/* serialization */
TEST_ASSERT(cbor_serialize_map(&stream, 2));
TEST_ASSERT(cbor_serialize_int(&stream, 1));
TEST_ASSERT(cbor_serialize_byte_string(&stream, "1"));
TEST_ASSERT(cbor_serialize_int(&stream, 2));
TEST_ASSERT(cbor_serialize_byte_string(&stream, "2"));
unsigned char data[] = {0xa2,
0x01, 0x41, 0x31, /* kv-pair 1 */
0x02, 0x41, 0x32, /* kv-pair 2 */
};
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
/* deserialization */
size_t map_length;
size_t offset = cbor_deserialize_map(&stream, 0, &map_length);
TEST_ASSERT_EQUAL_INT(2, map_length);
int key;
char value[8];
offset += cbor_deserialize_int(&stream, offset, &key);
TEST_ASSERT_EQUAL_INT(1, key);
offset += cbor_deserialize_byte_string(&stream, offset, value, sizeof(value));
TEST_ASSERT_EQUAL_STRING("1", value);
offset += cbor_deserialize_int(&stream, offset, &key);
TEST_ASSERT_EQUAL_INT(2, key);
offset += cbor_deserialize_byte_string(&stream, offset, value, sizeof(value));
TEST_ASSERT_EQUAL_STRING("2", value);
}
}
static void test_map_indefinite(void)
{
{
/* serialization */
TEST_ASSERT(cbor_serialize_map_indefinite(&stream));
TEST_ASSERT(cbor_serialize_int(&stream, 1));
TEST_ASSERT(cbor_serialize_byte_string(&stream, "1"));
TEST_ASSERT(cbor_serialize_int(&stream, 2));
TEST_ASSERT(cbor_serialize_byte_string(&stream, "2"));
TEST_ASSERT(cbor_write_break(&stream));
unsigned char data[] = {0xbf,
0x01, 0x41, 0x31, /* kv-pair 1 */
0x02, 0x41, 0x32, /* kv-pair 2 */
0xff
};
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
/* deserialization */
size_t offset = cbor_deserialize_map_indefinite(&stream, 0);
int count = 0;
while (!cbor_at_break(&stream, offset)) {
int key;
char value[16];
size_t read_bytes;
offset += read_bytes = cbor_deserialize_int(&stream, offset, &key);
TEST_ASSERT(read_bytes);
offset += read_bytes = cbor_deserialize_byte_string(&stream, offset,
value, sizeof(value));
TEST_ASSERT(read_bytes);
++count;
}
TEST_ASSERT_EQUAL_INT(2, count);
TEST_ASSERT(cbor_at_end(&stream, offset));
}
}
static void test_map_invalid(void)
{
{
/* check writing to stream that is not large enough */
cbor_stream_t stream;
cbor_init(&stream, 0, 0);
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_map(&stream, 1));
cbor_destroy(&stream);
}
{
/* check reading from stream that contains other type of data */
unsigned char data[] = {0x40}; /* empty string encoded in CBOR */
cbor_stream_t stream = {data, 1, 1};
size_t map_length;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_map(&stream, 0, &map_length));
}
}
#ifndef CBOR_NO_SEMANTIC_TAGGING
static void test_semantic_tagging(void)
{
char buffer[128];
{
const char *input = "1";
/* CBOR: byte string of length 1 marked with a tag to indicate it is a positive bignum */
/* byte 1: (major type 6, additional information */
/* byte 2: (major type 2, additional 1 for the length) */
/* byte 3: bytes representing the bignum */
unsigned char data[] = {0xc2, 0x41, 0x31};
TEST_ASSERT(cbor_write_tag(&stream, 2)); /* write byte 1 */
TEST_ASSERT(cbor_serialize_byte_string(&stream, input)); /* write byte 2 and 3 */
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
TEST_ASSERT(cbor_at_tag(&stream, 0));
TEST_ASSERT(cbor_deserialize_byte_string(&stream, 1, buffer, sizeof(buffer)));
CBOR_CHECK_DESERIALIZED(input, buffer, EQUAL_STRING);
}
}
#ifndef CBOR_NO_CTIME
static void test_date_time(void)
{
/* CBOR: UTF-8 string marked with a tag 0 to indicate it is a standard date/time string */
/* byte 1: (major type 6, additional information */
/* byte 2: (major type 2, additional 23 for the length) */
/* bytes 3 to 23: bytes representing the date/time UTF-8 string */
unsigned char data[] = {0xC0, 0x74, 0x32, 0x30, 0x31, 0x34, 0x2D, 0x30, 0x37, 0x2D, 0x30, 0x31,
0x54, 0x31, 0x35, 0x3A, 0x30, 0x30, 0x3A, 0x30, 0x30, 0x5A
};
struct tm val;
val.tm_year = 114;
val.tm_mon = 6;
val.tm_mday = 1;
val.tm_hour = 15;
val.tm_min = 0;
val.tm_sec = 0;
mktime(&val);
TEST_ASSERT(cbor_serialize_date_time(&stream, &val));
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
TEST_ASSERT(cbor_at_tag(&stream, 0));
struct tm val2;
TEST_ASSERT(cbor_deserialize_date_time(&stream, 0, &val2));
CBOR_CHECK_DESERIALIZED(val, val2, EQUAL_DATE_TIME);
}
static void test_date_time_epoch(void)
{
/*
CBOR: unsigned integer marked with a tag 1 to indicate it is a
standard date/time epoch (similar to time_t)
*/
unsigned char data[] = {0xC1, 0x01};
time_t val = 1;
TEST_ASSERT(cbor_serialize_date_time_epoch(&stream, val));
CBOR_CHECK_SERIALIZED(stream, data, sizeof(data));
time_t val2 = 0;
TEST_ASSERT(cbor_deserialize_date_time_epoch(&stream, 0, &val2));
CBOR_CHECK_DESERIALIZED(val, val2, EQUAL_INT);
}
#endif /* CBOR_NO_CTIME */
#endif /* CBOR_NO_SEMANTIC_TAGGING */
static void test_bool(void)
{
CBOR_CHECK(bool, bool, stream, false, HEX_LITERAL(0xf4), EQUAL_INT);
CBOR_CHECK(bool, bool, stream, true, HEX_LITERAL(0xf5), EQUAL_INT);
}
static void test_bool_invalid(void)
{
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_bool(&empty_stream, true));
TEST_ASSERT_EQUAL_INT(0, empty_stream.pos);
bool val_bool = 0;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_bool(&invalid_stream, 0, &val_bool));
}
#ifndef CBOR_NO_FLOAT
static void test_float_half(void)
{
/* check border conditions */
CBOR_CHECK(float, float_half, stream, -.0f, HEX_LITERAL(0xf9, 0x80, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float_half, stream, .0f, HEX_LITERAL(0xf9, 0x00, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float_half, stream, INFINITY, HEX_LITERAL(0xf9, 0x7c, 0x00), EQUAL_FLOAT);
/* TODO: Broken: encode_float_half issue? */
/*CBOR_CHECK(float, float_half, stream, NAN, HEX_LITERAL(0xf9, 0x7e, 0x00), EQUAL_FLOAT);*/
CBOR_CHECK(float, float_half, stream, -INFINITY, HEX_LITERAL(0xf9, 0xfc, 0x00), EQUAL_FLOAT);
/* check examples from the CBOR RFC */
CBOR_CHECK(float, float_half, stream, -4.f, HEX_LITERAL(0xf9, 0xc4, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float_half, stream, 1.f, HEX_LITERAL(0xf9, 0x3c, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float_half, stream, 1.5f, HEX_LITERAL(0xf9, 0x3e, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float_half, stream, 5.960464477539063e-8,
HEX_LITERAL(0xf9, 0x00, 0x01), EQUAL_FLOAT);
}
static void test_float_half_invalid(void)
{
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_float_half(&empty_stream, 0.f));
TEST_ASSERT_EQUAL_INT(0, empty_stream.pos);
float val_float_half = 0;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_float_half(&invalid_stream, 0, &val_float_half));
}
static void test_float(void)
{
/* check border conditions */
CBOR_CHECK(float, float, stream, .0f,
HEX_LITERAL(0xfa, 0x00, 0x00, 0x00, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float, stream, INFINITY,
HEX_LITERAL(0xfa, 0x7f, 0x80, 0x00, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float, stream, NAN,
HEX_LITERAL(0xfa, 0x7f, 0xc0, 0x00, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float, stream, -INFINITY,
HEX_LITERAL(0xfa, 0xff, 0x80, 0x00, 0x00), EQUAL_FLOAT);
/* check examples from the CBOR RFC */
CBOR_CHECK(float, float, stream, 100000.f,
HEX_LITERAL(0xfa, 0x47, 0xc3, 0x50, 0x00), EQUAL_FLOAT);
CBOR_CHECK(float, float, stream, 3.4028234663852886e+38,
HEX_LITERAL(0xfa, 0x7f, 0x7f, 0xff, 0xff), EQUAL_FLOAT);
}
static void test_float_invalid(void)
{
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_float(&empty_stream, 0.f));
TEST_ASSERT_EQUAL_INT(0, empty_stream.pos);
float val_float = 0;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_float(&invalid_stream, 0, &val_float));
}
static void test_double(void)
{
/* check border conditions */
CBOR_CHECK(double, double, stream, .0f,
HEX_LITERAL(0xfb, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), EQUAL_FLOAT);
CBOR_CHECK(double, double, stream, INFINITY,
HEX_LITERAL(0xfb, 0x7f, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), EQUAL_FLOAT);
CBOR_CHECK(double, double, stream, NAN,
HEX_LITERAL(0xfb, 0x7f, 0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), EQUAL_FLOAT);
CBOR_CHECK(double, double, stream, -INFINITY,
HEX_LITERAL(0xfb, 0xff, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), EQUAL_FLOAT);
/* check examples from the CBOR RFC */
CBOR_CHECK(double, double, stream, 1.1,
HEX_LITERAL(0xfb, 0x3f, 0xf1, 0x99, 0x99, 0x99, 0x99, 0x99, 0x9a), EQUAL_FLOAT);
CBOR_CHECK(double, double, stream, -4.1,
HEX_LITERAL(0xfb, 0xc0, 0x10, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66), EQUAL_FLOAT);
#if ARCH_32_BIT
CBOR_CHECK(double, double, stream, 1.e+300,
HEX_LITERAL(0xfb, 0x7e, 0x37, 0xe4, 0x3c, 0x88, 0x00, 0x75, 0x9c), EQUAL_FLOAT);
#endif
}
static void test_double_invalid(void)
{
TEST_ASSERT_EQUAL_INT(0, cbor_serialize_double(&empty_stream, 0));
TEST_ASSERT_EQUAL_INT(0, empty_stream.pos);
double val_double = 0;
TEST_ASSERT_EQUAL_INT(0, cbor_deserialize_double(&invalid_stream, 0, &val_double));
}
#endif /* CBOR_NO_FLOAT */
#ifndef CBOR_NO_PRINT
/**
* Manual test for testing the cbor_stream_decode function
*/
void test_stream_decode(void)
{
cbor_clear(&stream);
cbor_serialize_int(&stream, 1);
cbor_serialize_uint64_t(&stream, 2llu);
cbor_serialize_int64_t(&stream, 3);
cbor_serialize_int64_t(&stream, -5);
cbor_serialize_bool(&stream, true);
#ifndef CBOR_NO_FLOAT
cbor_serialize_float_half(&stream, 1.1f);
cbor_serialize_float(&stream, 1.5f);
cbor_serialize_double(&stream, 2.0);
#endif /* CBOR_NO_FLOAT */
cbor_serialize_byte_string(&stream, "abc");
cbor_serialize_unicode_string(&stream, "def");
cbor_serialize_array(&stream, 2);
cbor_serialize_int(&stream, 0);
cbor_serialize_int(&stream, 1);
cbor_serialize_array_indefinite(&stream);
cbor_serialize_int(&stream, 10);
cbor_serialize_int(&stream, 11);
cbor_write_break(&stream);
cbor_serialize_map(&stream, 2);
cbor_serialize_int(&stream, 1);
cbor_serialize_byte_string(&stream, "1");
cbor_serialize_int(&stream, 2);
cbor_serialize_byte_string(&stream, "2");
cbor_serialize_map_indefinite(&stream);
cbor_serialize_int(&stream, 10);
cbor_serialize_byte_string(&stream, "10");
cbor_serialize_int(&stream, 11);
cbor_serialize_byte_string(&stream, "11");
cbor_write_break(&stream);
#ifndef CBOR_NO_SEMANTIC_TAGGING
#ifndef CBOR_NO_CTIME
time_t rawtime;
time(&rawtime);
struct tm *timeinfo = localtime(&rawtime);
cbor_serialize_date_time(&stream, timeinfo);
cbor_serialize_date_time_epoch(&stream, rawtime);
#endif /* CBOR_NO_CTIME */
// decoder should skip the tag and print 'unsupported' here
cbor_write_tag(&stream, 2);
cbor_serialize_byte_string(&stream, "1");
#endif /* CBOR_NO_SEMANTIC_TAGGING */
cbor_stream_decode(&stream);
}
#endif /* CBOR_NO_PRINT */
/**
* See examples from CBOR RFC (cf. Appendix A. Examples)
*/
TestRef tests_cbor_all(void)
{
EMB_UNIT_TESTFIXTURES(fixtures) {
new_TestFixture(test_int),
new_TestFixture(test_int_invalid),
new_TestFixture(test_uint64_t),
new_TestFixture(test_uint64_t_invalid),
new_TestFixture(test_int64_t),
new_TestFixture(test_int64_t_invalid),
new_TestFixture(test_byte_string),
new_TestFixture(test_byte_string_invalid),
new_TestFixture(test_unicode_string),
new_TestFixture(test_unicode_string_invalid),
new_TestFixture(test_array),
new_TestFixture(test_array_indefinite),
new_TestFixture(test_array_invalid),
new_TestFixture(test_map),
new_TestFixture(test_map_indefinite),
new_TestFixture(test_map_invalid),
#ifndef CBOR_NO_SEMANTIC_TAGGING
new_TestFixture(test_semantic_tagging),
#ifndef CBOR_NO_CTIME
new_TestFixture(test_date_time),
new_TestFixture(test_date_time_epoch),
#endif /* CBOR_NO_CTIME */
#endif /* CBOR_NO_SEMANTIC_TAGGING */
new_TestFixture(test_bool),
new_TestFixture(test_bool_invalid),
#ifndef CBOR_NO_FLOAT
new_TestFixture(test_float_half),
new_TestFixture(test_float_half_invalid),
new_TestFixture(test_float),
new_TestFixture(test_float_invalid),
new_TestFixture(test_double),
new_TestFixture(test_double_invalid),
#endif /* CBOR_NO_FLOAT */
};
EMB_UNIT_TESTCALLER(CborTest, setUp, tearDown, fixtures);
return (TestRef)&CborTest;
}
void tests_cbor(void)
{
#ifndef CBOR_NO_PRINT
test_stream_decode();
#endif /* CBOR_NO_PRINT */
TESTS_RUN(tests_cbor_all());
}
Loading…
Cancel
Save