You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
493 lines
15 KiB
493 lines
15 KiB
/*- |
|
* Copyright 2005 Colin Percival |
|
* Copyright 2013 Christian Mehlis & René Kijewski |
|
* Copyright 2016 Martin Landsmann <martin.landsmann@haw-hamburg.de> |
|
* Copyright 2016 OTA keys S.A. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* $FreeBSD: src/lib/libmd/sha256c.c,v 1.2 2006/01/17 15:35:56 phk Exp $ |
|
*/ |
|
|
|
/** |
|
* @ingroup sys_hashes |
|
* @{ |
|
* |
|
* @file |
|
* @brief SHA256 hash function implementation |
|
* |
|
* @author Colin Percival |
|
* @author Christian Mehlis |
|
* @author Rene Kijewski |
|
* @author Martin Landsmann |
|
* @author Hermann Lelong |
|
* |
|
* @} |
|
*/ |
|
|
|
#include <string.h> |
|
#include <assert.h> |
|
|
|
#include "hashes/sha256.h" |
|
|
|
#ifdef __BIG_ENDIAN__ |
|
/* Copy a vector of big-endian uint32_t into a vector of bytes */ |
|
#define be32enc_vect memcpy |
|
|
|
/* Copy a vector of bytes into a vector of big-endian uint32_t */ |
|
#define be32dec_vect memcpy |
|
|
|
#else /* !__BIG_ENDIAN__ */ |
|
|
|
/* |
|
* Encode a length len/4 vector of (uint32_t) into a length len vector of |
|
* (unsigned char) in big-endian form. Assumes len is a multiple of 4. |
|
*/ |
|
static void be32enc_vect(void *dst_, const void *src_, size_t len) |
|
{ |
|
if ((uintptr_t)dst_ % sizeof(uint32_t) == 0 && |
|
(uintptr_t)src_ % sizeof(uint32_t) == 0) { |
|
uint32_t *dst = dst_; |
|
const uint32_t *src = src_; |
|
for (size_t i = 0; i < len / 4; i++) { |
|
dst[i] = __builtin_bswap32(src[i]); |
|
} |
|
} |
|
else { |
|
uint8_t *dst = dst_; |
|
const uint8_t *src = src_; |
|
for (size_t i = 0; i < len; i += 4) { |
|
dst[i] = src[i + 3]; |
|
dst[i + 1] = src[i + 2]; |
|
dst[i + 2] = src[i + 1]; |
|
dst[i + 3] = src[i]; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Decode a big-endian length len vector of (unsigned char) into a length |
|
* len/4 vector of (uint32_t). Assumes len is a multiple of 4. |
|
*/ |
|
#define be32dec_vect be32enc_vect |
|
|
|
#endif /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */ |
|
|
|
/* Elementary functions used by SHA256 */ |
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z) |
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) |
|
#define SHR(x, n) (x >> n) |
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n))) |
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) |
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) |
|
|
|
static const uint32_t K[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, |
|
}; |
|
|
|
/* |
|
* SHA256 block compression function. The 256-bit state is transformed via |
|
* the 512-bit input block to produce a new state. |
|
*/ |
|
static void sha256_transform(uint32_t *state, const unsigned char block[64]) |
|
{ |
|
uint32_t W[64]; |
|
uint32_t S[8]; |
|
|
|
/* 1. Prepare message schedule W. */ |
|
be32dec_vect(W, block, 64); |
|
for (int i = 16; i < 64; i++) { |
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; |
|
} |
|
|
|
/* 2. Initialize working variables. */ |
|
memcpy(S, state, 32); |
|
|
|
/* 3. Mix. */ |
|
for (int i = 0; i < 64; ++i) { |
|
uint32_t e = S[(68 - i) % 8], f = S[(69 - i) % 8]; |
|
uint32_t g = S[(70 - i) % 8], h = S[(71 - i) % 8]; |
|
uint32_t t0 = h + S1(e) + Ch(e, f, g) + W[i] + K[i]; |
|
|
|
uint32_t a = S[(64 - i) % 8], b = S[(65 - i) % 8]; |
|
uint32_t c = S[(66 - i) % 8], d = S[(67 - i) % 8]; |
|
uint32_t t1 = S0(a) + Maj(a, b, c); |
|
|
|
S[(67 - i) % 8] = d + t0; |
|
S[(71 - i) % 8] = t0 + t1; |
|
} |
|
|
|
/* 4. Mix local working variables into global state */ |
|
for (int i = 0; i < 8; i++) { |
|
state[i] += S[i]; |
|
} |
|
} |
|
|
|
static unsigned char PAD[64] = { |
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
}; |
|
|
|
/* Add padding and terminating bit-count. */ |
|
static void sha256_pad(sha256_context_t *ctx) |
|
{ |
|
/* |
|
* Convert length to a vector of bytes -- we do this now rather |
|
* than later because the length will change after we pad. |
|
*/ |
|
unsigned char len[8]; |
|
|
|
be32enc_vect(len, ctx->count, 8); |
|
|
|
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */ |
|
uint32_t r = (ctx->count[1] >> 3) & 0x3f; |
|
uint32_t plen = (r < 56) ? (56 - r) : (120 - r); |
|
sha256_update(ctx, PAD, (size_t) plen); |
|
|
|
/* Add the terminating bit-count */ |
|
sha256_update(ctx, len, 8); |
|
} |
|
|
|
/* SHA-256 initialization. Begins a SHA-256 operation. */ |
|
void sha256_init(sha256_context_t *ctx) |
|
{ |
|
/* Zero bits processed so far */ |
|
ctx->count[0] = ctx->count[1] = 0; |
|
|
|
/* Magic initialization constants */ |
|
ctx->state[0] = 0x6A09E667; |
|
ctx->state[1] = 0xBB67AE85; |
|
ctx->state[2] = 0x3C6EF372; |
|
ctx->state[3] = 0xA54FF53A; |
|
ctx->state[4] = 0x510E527F; |
|
ctx->state[5] = 0x9B05688C; |
|
ctx->state[6] = 0x1F83D9AB; |
|
ctx->state[7] = 0x5BE0CD19; |
|
} |
|
|
|
/* Add bytes into the hash */ |
|
void sha256_update(sha256_context_t *ctx, const void *data, size_t len) |
|
{ |
|
/* Number of bytes left in the buffer from previous updates */ |
|
uint32_t r = (ctx->count[1] >> 3) & 0x3f; |
|
|
|
/* Convert the length into a number of bits */ |
|
uint32_t bitlen1 = ((uint32_t) len) << 3; |
|
uint32_t bitlen0 = ((uint32_t) len) >> 29; |
|
|
|
/* Update number of bits */ |
|
if ((ctx->count[1] += bitlen1) < bitlen1) { |
|
ctx->count[0]++; |
|
} |
|
|
|
ctx->count[0] += bitlen0; |
|
|
|
/* Handle the case where we don't need to perform any transforms */ |
|
if (len < 64 - r) { |
|
memcpy(&ctx->buf[r], data, len); |
|
return; |
|
} |
|
|
|
/* Finish the current block */ |
|
const unsigned char *src = data; |
|
|
|
memcpy(&ctx->buf[r], src, 64 - r); |
|
sha256_transform(ctx->state, ctx->buf); |
|
src += 64 - r; |
|
len -= 64 - r; |
|
|
|
/* Perform complete blocks */ |
|
while (len >= 64) { |
|
sha256_transform(ctx->state, src); |
|
src += 64; |
|
len -= 64; |
|
} |
|
|
|
/* Copy left over data into buffer */ |
|
memcpy(ctx->buf, src, len); |
|
} |
|
|
|
/* |
|
* SHA-256 finalization. Pads the input data, exports the hash value, |
|
* and clears the context state. |
|
*/ |
|
void sha256_final(sha256_context_t *ctx, void *dst) |
|
{ |
|
/* Add padding */ |
|
sha256_pad(ctx); |
|
|
|
/* Write the hash */ |
|
be32enc_vect(dst, ctx->state, 32); |
|
|
|
/* Clear the context state */ |
|
memset((void *) ctx, 0, sizeof(*ctx)); |
|
} |
|
|
|
void *sha256(const void *data, size_t len, void *digest) |
|
{ |
|
sha256_context_t c; |
|
static unsigned char m[SHA256_DIGEST_LENGTH]; |
|
|
|
if (digest == NULL) { |
|
digest = m; |
|
} |
|
|
|
sha256_init(&c); |
|
sha256_update(&c, data, len); |
|
sha256_final(&c, digest); |
|
|
|
return digest; |
|
} |
|
|
|
|
|
void hmac_sha256_init(hmac_context_t *ctx, const void *key, size_t key_length) |
|
{ |
|
unsigned char k[SHA256_INTERNAL_BLOCK_SIZE]; |
|
|
|
memset((void *)k, 0x00, SHA256_INTERNAL_BLOCK_SIZE); |
|
|
|
if (key_length > SHA256_INTERNAL_BLOCK_SIZE) { |
|
sha256(key, key_length, k); |
|
} |
|
else { |
|
memcpy((void *)k, key, key_length); |
|
} |
|
|
|
/* |
|
* create the inner and outer keypads |
|
* rising hamming distance enforcing i_* and o_* are distinct |
|
* in at least one bit |
|
*/ |
|
unsigned char o_key_pad[SHA256_INTERNAL_BLOCK_SIZE]; |
|
unsigned char i_key_pad[SHA256_INTERNAL_BLOCK_SIZE]; |
|
|
|
for (size_t i = 0; i < SHA256_INTERNAL_BLOCK_SIZE; ++i) { |
|
o_key_pad[i] = 0x5c ^ k[i]; |
|
i_key_pad[i] = 0x36 ^ k[i]; |
|
} |
|
|
|
/* |
|
* Initiate calculation of the inner hash |
|
* tmp = hash(i_key_pad CONCAT message) |
|
*/ |
|
sha256_init(&ctx->c_in); |
|
sha256_update(&ctx->c_in, i_key_pad, SHA256_INTERNAL_BLOCK_SIZE); |
|
|
|
/* |
|
* Initiate calculation of the outer hash |
|
* result = hash(o_key_pad CONCAT tmp) |
|
*/ |
|
sha256_init(&ctx->c_out); |
|
sha256_update(&ctx->c_out, o_key_pad, SHA256_INTERNAL_BLOCK_SIZE); |
|
|
|
} |
|
|
|
void hmac_sha256_update(hmac_context_t *ctx, const void *data, size_t len) |
|
{ |
|
sha256_update(&ctx->c_in, data, len); |
|
} |
|
|
|
void hmac_sha256_final(hmac_context_t *ctx, void *digest) |
|
{ |
|
unsigned char tmp[SHA256_DIGEST_LENGTH]; |
|
|
|
static unsigned char m[SHA256_DIGEST_LENGTH]; |
|
|
|
if (digest == NULL) { |
|
digest = m; |
|
} |
|
|
|
sha256_final(&ctx->c_in, tmp); |
|
sha256_update(&ctx->c_out, tmp, SHA256_DIGEST_LENGTH); |
|
sha256_final(&ctx->c_out, digest); |
|
} |
|
|
|
const void *hmac_sha256(const void *key, size_t key_length, |
|
const void *data, size_t len, void *digest) |
|
{ |
|
|
|
hmac_context_t ctx; |
|
|
|
hmac_sha256_init(&ctx, key, key_length); |
|
hmac_sha256_update(&ctx,data, len); |
|
hmac_sha256_final(&ctx, digest); |
|
|
|
return digest; |
|
} |
|
|
|
/** |
|
* @brief helper to compute sha256 inplace for the given buffer |
|
* |
|
* @param[in, out] element the buffer to compute a sha256 and store it back to it |
|
* |
|
*/ |
|
static inline void sha256_inplace(unsigned char element[SHA256_DIGEST_LENGTH]) |
|
{ |
|
sha256_context_t ctx; |
|
|
|
sha256_init(&ctx); |
|
sha256_update(&ctx, element, SHA256_DIGEST_LENGTH); |
|
sha256_final(&ctx, element); |
|
} |
|
|
|
void *sha256_chain(const void *seed, size_t seed_length, |
|
size_t elements, void *tail_element) |
|
{ |
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH]; |
|
|
|
/* assert if no sha256-chain can be created */ |
|
assert(elements >= 2); |
|
|
|
/* 1st iteration */ |
|
sha256(seed, seed_length, tmp_element); |
|
|
|
/* perform consecutive iterations minus the first one */ |
|
for (size_t i = 0; i < (elements - 1); ++i) { |
|
sha256_inplace(tmp_element); |
|
} |
|
|
|
/* store the result */ |
|
memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH); |
|
|
|
return tail_element; |
|
} |
|
|
|
void *sha256_chain_with_waypoints(const void *seed, |
|
size_t seed_length, |
|
size_t elements, |
|
void *tail_element, |
|
sha256_chain_idx_elm_t *waypoints, |
|
size_t *waypoints_length) |
|
{ |
|
/* assert if no sha256-chain can be created */ |
|
assert(elements >= 2); |
|
|
|
/* assert to prevent division by 0 */ |
|
assert(*waypoints_length > 0); |
|
|
|
/* assert if no waypoints can be created */ |
|
assert(*waypoints_length > 1); |
|
|
|
/* if we have enough space we store the whole chain */ |
|
if (*waypoints_length >= elements) { |
|
/* 1st iteration */ |
|
sha256(seed, seed_length, waypoints[0].element); |
|
waypoints[0].index = 0; |
|
|
|
/* perform consecutive iterations starting at index 1*/ |
|
for (size_t i = 1; i < elements; ++i) { |
|
sha256_context_t ctx; |
|
sha256_init(&ctx); |
|
sha256_update(&ctx, waypoints[(i - 1)].element, SHA256_DIGEST_LENGTH); |
|
sha256_final(&ctx, waypoints[i].element); |
|
waypoints[i].index = i; |
|
} |
|
|
|
/* store the result */ |
|
memcpy(tail_element, waypoints[(elements - 1)].element, SHA256_DIGEST_LENGTH); |
|
*waypoints_length = (elements - 1); |
|
|
|
return tail_element; |
|
} |
|
else { |
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH]; |
|
size_t waypoint_streak = (elements / *waypoints_length); |
|
|
|
/* 1st waypoint iteration */ |
|
sha256(seed, seed_length, tmp_element); |
|
for (size_t i = 1; i < waypoint_streak; ++i) { |
|
sha256_inplace(tmp_element); |
|
} |
|
memcpy(waypoints[0].element, tmp_element, SHA256_DIGEST_LENGTH); |
|
waypoints[0].index = (waypoint_streak - 1); |
|
|
|
/* index of the current computed element in the chain */ |
|
size_t index = (waypoint_streak - 1); |
|
|
|
/* consecutive waypoint iterations */ |
|
size_t j = 1; |
|
for (; j < *waypoints_length; ++j) { |
|
for (size_t i = 0; i < waypoint_streak; ++i) { |
|
sha256_inplace(tmp_element); |
|
index++; |
|
} |
|
memcpy(waypoints[j].element, tmp_element, SHA256_DIGEST_LENGTH); |
|
waypoints[j].index = index; |
|
} |
|
|
|
/* store/pass the last used index in the waypoint array */ |
|
*waypoints_length = (j - 1); |
|
|
|
/* remaining iterations down to elements */ |
|
for (size_t i = index; i < (elements - 1); ++i) { |
|
sha256_inplace(tmp_element); |
|
} |
|
|
|
/* store the result */ |
|
memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH); |
|
|
|
return tail_element; |
|
} |
|
} |
|
|
|
int sha256_chain_verify_element(void *element, |
|
size_t element_index, |
|
void *tail_element, |
|
size_t chain_length) |
|
{ |
|
unsigned char tmp_element[SHA256_DIGEST_LENGTH]; |
|
|
|
int delta_count = (chain_length - element_index); |
|
|
|
/* assert if we have an index mismatch */ |
|
assert(delta_count >= 1); |
|
|
|
memcpy((void *)tmp_element, element, SHA256_DIGEST_LENGTH); |
|
|
|
/* perform all consecutive iterations down to tail_element */ |
|
for (int i = 0; i < (delta_count - 1); ++i) { |
|
sha256_inplace(tmp_element); |
|
} |
|
|
|
/* return if the computed element equals the tail_element */ |
|
return (memcmp(tmp_element, tail_element, SHA256_DIGEST_LENGTH) != 0); |
|
}
|
|
|