Started work on 2in9 waveshare device, but nothing much besides copying has yet happened

digi-v2-tests
Christoph Groß 5 years ago
parent 1568cc2890
commit 4cd9b26a24

@ -0,0 +1,169 @@
//! SPI Commands for the Waveshare 4.2" E-Ink Display
/// EPD4IN2 commands
///
/// Should rarely (never?) be needed directly.
///
/// For more infos about the addresses and what they are doing look into the pdfs
///
/// The description of the single commands is mostly taken from IL0398.pdf
#[allow(dead_code)]
#[allow(non_camel_case_types)]
#[derive(Copy, Clone)]
pub enum Command {
/// Set Resolution, LUT selection, BWR pixels, gate scan direction, source shift direction, booster switch, soft reset
PANEL_SETTING = 0x00,
/// selecting internal and external power
POWER_SETTING = 0x01,
/// After the Power Off command, the driver will power off following the Power Off Sequence. This command will turn off charge
/// pump, T-con, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD becomes OFF.
/// Source Driver output and Vcom will remain as previous condition, which may have 2 conditions: floating.
POWER_OFF = 0x02,
/// Setting Power OFF sequence
POWER_OFF_SEQUENCE_SETTING = 0x03,
/// Turning On the Power
POWER_ON = 0x04,
/// This command enables the internal bandgap, which will be cleared by the next POF.
POWER_ON_MEASURE = 0x05,
/// Starting data transmission
BOOSTER_SOFT_START = 0x06,
/// After this command is transmitted, the chip would enter the deep-sleep mode to save power.
///
/// The deep sleep mode would return to standby by hardware reset.
///
/// The only one parameter is a check code, the command would be excuted if check code = 0xA5.
DEEP_SLEEP = 0x07,
/// This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data
/// transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.
///
/// - In B/W mode, this command writes “OLD” data to SRAM.
/// - In B/W/Red mode, this command writes “B/W” data to SRAM.
/// - In Program mode, this command writes “OTP” data to SRAM for programming.
DATA_START_TRANSMISSION_1 = 0x10,
/// Stopping data transmission
DATA_STOP = 0x11,
/// While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.
///
/// After Display Refresh command, BUSY_N signal will become “0” and the refreshing of panel starts.
DISPLAY_REFRESH = 0x12,
/// This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data
/// transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.
/// - In B/W mode, this command writes “NEW” data to SRAM.
/// - In B/W/Red mode, this command writes “RED” data to SRAM.
DATA_START_TRANSMISSION_2 = 0x13,
/// This command stores VCOM Look-Up Table with 7 groups of data. Each group contains information for one state and is stored
/// with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_FOR_VCOM = 0x20,
/// This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_WHITE_TO_WHITE = 0x21,
/// This command stores Black-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_BLACK_TO_WHITE = 0x22,
/// This command stores White-to-Black Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_WHITE_TO_BLACK = 0x23,
/// This command stores Black-to-Black Look-Up Table with 7 groups of data. Each group contains information for one state and is
/// stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.
///
/// from IL0373
LUT_BLACK_TO_BLACK = 0x24,
/// The command controls the PLL clock frequency.
PLL_CONTROL = 0x30,
/// This command reads the temperature sensed by the temperature sensor.
///
/// Doesn't work! Waveshare doesn't connect the read pin
TEMPERATURE_SENSOR_COMMAND = 0x40,
/// Selects the Internal or External temperature sensor and offset
TEMPERATURE_SENSOR_SELECTION = 0x41,
/// Write External Temperature Sensor
TEMPERATURE_SENSOR_WRITE = 0x42,
/// Read External Temperature Sensor
///
/// Doesn't work! Waveshare doesn't connect the read pin
TEMPERATURE_SENSOR_READ = 0x43,
/// This command indicates the interval of Vcom and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync)
VCOM_AND_DATA_INTERVAL_SETTING = 0x50,
/// This command indicates the input power condition. Host can read this flag to learn the battery condition.
LOW_POWER_DETECTION = 0x51,
/// This command defines non-overlap period of Gate and Source.
TCON_SETTING = 0x60,
/// This command defines alternative resolution and this setting is of higher priority than the RES[1:0] in R00H (PSR).
RESOLUTION_SETTING = 0x61,
/// This command defines the Fist Active Gate and First Active Source of active channels.
GSST_SETTING = 0x65,
/// The LUT_REV / Chip Revision is read from OTP address = 0x001.
///
/// Doesn't work! Waveshare doesn't connect the read pin
REVISION = 0x70,
/// Read Flags. This command reads the IC status
/// PTL, I2C_ERR, I2C_BUSY, DATA, PON, POF, BUSY
///
/// Doesn't work! Waveshare doesn't connect the read pin
GET_STATUS = 0x71,
/// Automatically measure VCOM. This command reads the IC status
AUTO_MEASUREMENT_VCOM = 0x80,
/// This command gets the VCOM value
///
/// Doesn't work! Waveshare doesn't connect the read pin
READ_VCOM_VALUE = 0x81,
/// Set VCM_DC
VCM_DC_SETTING = 0x82,
/// This command sets partial window
PARTIAL_WINDOW = 0x90,
/// This command makes the display enter partial mode
PARTIAL_IN = 0x91,
/// This command makes the display exit partial mode and enter normal mode
PARTIAL_OUT = 0x92,
/// After this command is issued, the chip would enter the program mode.
///
/// After the programming procedure completed, a hardware reset is necessary for leaving program mode.
///
/// The only one parameter is a check code, the command would be excuted if check code = 0xA5.
PROGRAM_MODE = 0xA0,
/// After this command is transmitted, the programming state machine would be activated.
///
/// The BUSY flag would fall to 0 until the programming is completed.
ACTIVE_PROGRAMMING = 0xA1,
/// The command is used for reading the content of OTP for checking the data of programming.
///
/// The value of (n) is depending on the amount of programmed data, tha max address = 0xFFF.
READ_OTP = 0xA2,
/// This command is set for saving power during fresh period. If the output voltage of VCOM / Source is from negative to positive or
/// from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two
/// parameters.
POWER_SAVING = 0xE3,
}
impl Command {
/// Returns the address of the command
pub fn addr(self) -> u8 {
self as u8
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn command_addr() {
assert_eq!(Command::POWER_SAVING.addr(), 0xE3);
assert_eq!(Command::PANEL_SETTING.addr(), 0x00);
assert_eq!(Command::DISPLAY_REFRESH.addr(), 0x12);
}
}

@ -0,0 +1,102 @@
pub(crate) const LUT_VCOM0: [u8; 44] = [
0x00, 0x17, 0x00, 0x00, 0x00, 0x02,
0x00, 0x17, 0x17, 0x00, 0x00, 0x02,
0x00, 0x0A, 0x01, 0x00, 0x00, 0x01,
0x00, 0x0E, 0x0E, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_VCOM0_QUICK: [u8; 44] = [
0x00, 0x0E, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_WW: [u8; 42] =[
0x40, 0x17, 0x00, 0x00, 0x00, 0x02,
0x90, 0x17, 0x17, 0x00, 0x00, 0x02,
0x40, 0x0A, 0x01, 0x00, 0x00, 0x01,
0xA0, 0x0E, 0x0E, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_WW_QUICK: [u8; 42] =[
0xA0, 0x0E, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_BW: [u8; 42] =[
0x40, 0x17, 0x00, 0x00, 0x00, 0x02,
0x90, 0x17, 0x17, 0x00, 0x00, 0x02,
0x40, 0x0A, 0x01, 0x00, 0x00, 0x01,
0xA0, 0x0E, 0x0E, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_BW_QUICK: [u8; 42] =[
0xA0, 0x0E, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_BB: [u8; 42] =[
0x80, 0x17, 0x00, 0x00, 0x00, 0x02,
0x90, 0x17, 0x17, 0x00, 0x00, 0x02,
0x80, 0x0A, 0x01, 0x00, 0x00, 0x01,
0x50, 0x0E, 0x0E, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_BB_QUICK: [u8; 42] =[
0x50, 0x0E, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_WB: [u8; 42] =[
0x80, 0x17, 0x00, 0x00, 0x00, 0x02,
0x90, 0x17, 0x17, 0x00, 0x00, 0x02,
0x80, 0x0A, 0x01, 0x00, 0x00, 0x01,
0x50, 0x0E, 0x0E, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
pub(crate) const LUT_WB_QUICK: [u8; 42] =[
0x50, 0x0E, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];

@ -0,0 +1,560 @@
//! A simple Driver for the Waveshare 4.2" E-Ink Display via SPI
//!
//! The other Waveshare E-Ink Displays should be added later on
//!
//! Build with the help of documentation/code from [Waveshare](https://www.waveshare.com/wiki/4.2inch_e-Paper_Module),
//! [Ben Krasnows partial Refresh tips](https://benkrasnow.blogspot.de/2017/10/fast-partial-refresh-on-42-e-paper.html) and
//! the driver documents in the `pdfs`-folder as orientation.
//!
//! This driver was built using [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://docs.rs/embedded-hal/~0.1
//!
//! # Requirements
//!
//! ### SPI
//!
//! - MISO is not connected/available
//! - SPI_MODE_0 is used (CPHL = 0, CPOL = 0)
//! - 8 bits per word, MSB first
//! - Max. Speed tested was 8Mhz but more should be possible
//!
//! ### Other....
//!
//! - Buffersize: Wherever a buffer is used it always needs to be of the size: `width / 8 * length`,
//! where width and length being either the full e-ink size or the partial update window size
//!
//! # Examples
//!
//! ```ignore
//! let mut epd4in2 = EPD4in2::new(spi, cs, busy, dc, rst, delay).unwrap();
//!
//! let mut buffer = [0u8, epd4in2.get_width() / 8 * epd4in2.get_height()];
//!
//! // draw something into the buffer
//!
//! epd4in2.display_and_transfer_buffer(buffer, None);
//!
//! // wait and look at the image
//!
//! epd4in2.clear_frame(None);
//!
//! epd4in2.sleep();
//! ```
//!
//!
//!
//! BE CAREFUL! The Partial Drawing can "destroy" your display.
//! It needs more testing first.
use hal::{
blocking::{
spi::Write,
delay::*
},
spi::{Mode, Phase, Polarity},
digital::*
};
//The Lookup Tables for the Display
mod lut;
use self::lut::*;
use drawing::color::Color;
pub mod command;
pub use command::Command as Command;
//TODO: test spi mode
/// SPI mode -
/// For more infos see [Requirements: SPI](index.html#spi)
pub const SPI_MODE: Mode = Mode {
phase: Phase::CaptureOnFirstTransition,
polarity: Polarity::IdleLow,
};
/// EPD4in2 driver
///
pub struct EPD4in2<SPI, CS, BUSY, DC, RST, D> {
/// SPI
spi: SPI,
/// CS for SPI
cs: CS,
/// Low for busy, Wait until display is ready!
busy: BUSY,
/// Data/Command Control Pin (High for data, Low for command)
dc: DC,
/// Pin for Reseting
rst: RST,
/// The concrete Delay implementation
delay: D,
/// Width
width: u16,
/// Height
height: u16,
}
impl<SPI, CS, BUSY, DC, RST, D, E> EPD4in2<SPI, CS, BUSY, DC, RST, D>
where
SPI: Write<u8, Error = E>,
CS: OutputPin,
BUSY: InputPin,
DC: OutputPin,
RST: OutputPin,
D: DelayUs<u16> + DelayMs<u16>,
{
/// Get the width of the display
pub fn get_width(&self) -> u16 {
self.width
}
/// Get the height of the display
pub fn get_height(&self) -> u16 {
self.height
}
/// Creates a new driver from a SPI peripheral, CS Pin, Busy InputPin, DC
///
/// This already initialises the device. That means [EPD4in2::init()](EPD4in2::init()) isn't needed directly afterwards
///
/// # Example
///
/// ```ignore
/// //buffer = some image data;
///
/// let mut epd4in2 = EPD4in2::new(spi, cs, busy, dc, rst, delay);
///
/// epd4in2.display_and_transfer_frame(buffer, None);
///
/// epd4in2.sleep();
/// ```
pub fn new(spi: SPI, cs: CS, busy: BUSY, dc: DC, rst: RST, delay: D) -> Result<Self, E> {
//TODO: width und height anpassbar machen?
let width = 400;
let height = 300;
let mut epd4in2 = EPD4in2 {spi, cs, busy, dc, rst, delay, width, height };
epd4in2.init()?;
Ok(epd4in2)
}
/// This initialises the EPD and powers it up
///
/// This function is already called from [EPD4in2::new()](EPD4in2::new())
///
/// This function calls [EPD4in2::reset()](EPD4in2::reset()),
/// so you don't need to call reset your self when trying to wake your device up
/// after setting it to sleep.
pub fn init(&mut self) -> Result<(), E> {
// reset the device
self.reset();
// set the power settings
self.send_command(Command::POWER_SETTING)?;
self.send_data(0x03)?; //VDS_EN, VDG_EN
self.send_data(0x00)?; //VCOM_HV, VGHL_LV[1], VGHL_LV[0]
self.send_data(0x2b)?; //VDH
self.send_data(0x2b)?; //VDL
self.send_data(0xff)?; //VDHR
// start the booster
self.send_command(Command::BOOSTER_SOFT_START)?;
for _ in 0..3 {
self.send_data(0x17)?; //07 0f 17 1f 27 2F 37 2f
}
// power on
self.send_command(Command::POWER_ON)?;
self.wait_until_idle();
// set the panel settings
self.send_command(Command::PANEL_SETTING)?;
// 0x0F Red Mode, LUT from OTP
// 0x1F B/W Mode, LUT from OTP
// 0x2F Red Mode, LUT set by registers
// 0x3F B/W Mode, LUT set by registers
self.send_data(0x3F)?;
// the values used by waveshare before for the panel settings
// instead of our one liner:
// SendData(0xbf); // KW-BF KWR-AF BWROTP 0f
// SendData(0x0b);
// Set Frequency, 200 Hz didn't work on my board
// 150Hz and 171Hz wasn't tested yet
// TODO: Test these other frequencies
// 3A 100HZ 29 150Hz 39 200HZ 31 171HZ DEFAULT: 3c 50Hz
self.send_command(Command::PLL_CONTROL)?;
self.send_data(0x3A)?;
Ok(())
}
/// Transmit partial data to the SRAM of the EPD,
/// the final parameter dtm chooses between the 2
/// internal buffers
///
/// Normally it should be dtm2, so use false
///
/// BUFFER needs to be of size: w / 8 * l !
pub fn set_partial_window(&mut self, buffer: &[u8], x: u16, y: u16, w: u16, l: u16, is_dtm1: bool) -> Result<(), E> {
if buffer.len() as u16 != w / 8 * l {
//TODO: panic!! or sth like that
//return Err("Wrong buffersize");
}
self.send_command(Command::PARTIAL_IN)?;
self.send_command(Command::PARTIAL_WINDOW)?;
self.send_data((x >> 8) as u8)?;
let tmp = x & 0xf8;
self.send_data(tmp as u8)?; // x should be the multiple of 8, the last 3 bit will always be ignored
let tmp = tmp + w - 1;
self.send_data((tmp >> 8) as u8)?;
self.send_data((tmp | 0x07) as u8)?;
self.send_data((y >> 8) as u8)?;
self.send_data(y as u8)?;
self.send_data(((y + l - 1) >> 8) as u8)?;
self.send_data((y + l - 1) as u8)?;
self.send_data(0x01)?; // Gates scan both inside and outside of the partial window. (default)
if is_dtm1 {
self.send_command(Command::DATA_START_TRANSMISSION_1)?
} else {
self.send_command(Command::DATA_START_TRANSMISSION_2)?
}
self.send_multiple_data(buffer)?;
self.send_command(Command::PARTIAL_OUT)
}
// void DisplayFrame(const unsigned char* frame_buffer);
/// Display the frame data from SRAM
/// Uses the SLOW!! full update/refresh
/// Default color: 0xff
///
pub fn display_and_transfer_frame(&mut self, buffer: &[u8], color: Option<u8>) -> Result<(), E>{
let color = color.unwrap_or(0xff);
self.send_resolution()?;
self.send_command(Command::VCM_DC_SETTING)?;
self.send_data(0x12)?;
self.send_command(Command::VCOM_AND_DATA_INTERVAL_SETTING)?;
//TODO: this was a send_command instead of a send_data. check if it's alright and doing what it should do (setting the default values)
//oldTODO is this really a command here or shouldn't that be data?
//self.send_command_u8(0x97)?; //VBDF 17|D7 VBDW 97 VBDB 57 VBDF F7 VBDW 77 VBDB 37 VBDR B7
self.send_data(0x97)?;
self.send_command(Command::DATA_START_TRANSMISSION_1)?;
for _ in 0..(buffer.len()) {
self.send_data(color)?;
}
self.delay_ms(2);
self.send_command(Command::DATA_START_TRANSMISSION_2)?;
//self.send_multiple_data(buffer)?;
for &elem in buffer.iter() {
self.send_data(elem)?;
}
self.delay_ms(2);
self.set_lut()?;
self.send_command(Command::DISPLAY_REFRESH)?;
//TODO: adapt time, is this long delay really needed?
self.delay_ms(10);
self.wait_until_idle();
Ok(())
}
fn send_resolution(&mut self) -> Result<(), E> {
let w = self.get_width();
let h = self.get_height();
self.send_command(Command::RESOLUTION_SETTING)?;
self.send_data((w >> 8) as u8)?;
self.send_data(w as u8)?;
self.send_data((h >> 8) as u8)?;
self.send_data(h as u8)
}
/// Displays the frame data from SRAM
pub fn display_frame(&mut self) -> Result<(), E> {
self.set_lut()?;
self.send_command(Command::DISPLAY_REFRESH)?;
self.delay_ms(100);
self.wait_until_idle();
Ok(())
}
/// Same as display_frame(), but with nearly no delay
/// and uses the fast/partial refresh LUT
/// needs more testing!!!
/// maybe delay can be fully removed as wait_until_idle should do
/// the necessary stuff
/// TODO: check delay!!!
/// Displays the frame data from SRAM
pub fn display_frame_quick(&mut self) -> Result<(), E> {
self.set_lut_quick()?;
self.send_command(Command::DISPLAY_REFRESH)?;
self.delay_ms(1);
self.wait_until_idle();
Ok(())
}
/// Clears the frame from the buffer
///
/// Set a reset_color if you want a different from the default 0xff
///
/// TODO: should that option be removed? E.g. the struct contains an additional default background value
/// which is settable?
pub fn clear_frame(&mut self, reset_color: Option<Color>) -> Result<(), E> {
let reset_color: Color = reset_color.unwrap_or(Color::White);
self.send_resolution()?;
let size = self.width / 8 * self.height;
self.send_command(Command::DATA_START_TRANSMISSION_1)?;
self.delay_ms(2);
for _ in 0..size {
self.send_data(reset_color.get_byte_value())?;
}
self.delay_ms(2);
self.send_command(Command::DATA_START_TRANSMISSION_2)?;
self.delay_ms(2);
for _ in 0..size {
self.send_data(reset_color.get_byte_value())?;
}
Ok(())
}
/// Let the device enter deep-sleep mode to save power.
///
/// The deep sleep mode returns to standby with a hardware reset.
/// But you can also use [EPD4in2::reset()](EPD4in2::reset()) to awaken.
/// But as you need to power it up once more anyway you can also just directly use [EPD4in2::init()](EPD4in2::init()) for resetting
/// and initialising which already contains the reset
pub fn sleep(&mut self) -> Result<(), E> {
self.send_command(Command::VCOM_AND_DATA_INTERVAL_SETTING)?;
self.send_data(0x17)?; //border floating
self.send_command(Command::VCM_DC_SETTING)?; // VCOM to 0V
self.send_command(Command::PANEL_SETTING)?;
self.delay_ms(100);
self.send_command(Command::POWER_SETTING)?; //VG&VS to 0V fast
for _ in 0..4 {
self.send_data(0x00)?;
}
self.delay_ms(100);
self.send_command(Command::POWER_OFF)?;
self.wait_until_idle();
self.send_command(Command::DEEP_SLEEP)?;
self.send_data(0xA5)?;
Ok(())
}
/// Resets the device.
///
/// Often used to awake the module from deep sleep. See [EPD4in2::sleep()](EPD4in2::sleep())
///
/// TODO: Takes at least 400ms of delay alone, can it be shortened?
pub fn reset(&mut self) {
self.rst.set_low();
//TODO: why 200ms? (besides being in the waveshare code)
self.delay_ms(200);
self.rst.set_high();
//TODO: same as 3 lines above
self.delay_ms(200);
}
/// Fill the look-up table for the EPD
//TODO: make public?
fn set_lut(&mut self) -> Result<(), E> {
self.set_lut_helper(
&LUT_VCOM0,
&LUT_WW,
&LUT_BW,
&LUT_WB,
&LUT_BB)
}
/// Fill the look-up table for a quick display (partial refresh)
///
/// Is automatically done by [EPD4in2::display_frame_quick()](EPD4in2::display_frame_quick())
/// //TODO: make public?
fn set_lut_quick(&mut self) -> Result<(), E> {
self.set_lut_helper(
&LUT_VCOM0_QUICK,
&LUT_WW_QUICK,
&LUT_BW_QUICK,
&LUT_WB_QUICK,
&LUT_BB_QUICK)
}
fn set_lut_helper(&mut self,
lut_vcom: &[u8],
lut_ww: &[u8],
lut_bw: &[u8],
lut_wb: &[u8],
lut_bb: &[u8]) -> Result<(), E>
{
//vcom
self.send_command(Command::LUT_FOR_VCOM)?;
self.send_multiple_data(lut_vcom)?;
//ww --
self.send_command(Command::LUT_WHITE_TO_WHITE)?;
self.send_multiple_data(lut_ww)?;
//bw r
self.send_command(Command::LUT_BLACK_TO_WHITE)?;
self.send_multiple_data(lut_bw)?;
//wb w
self.send_command(Command::LUT_WHITE_TO_BLACK)?;
self.send_multiple_data(lut_wb)?;
//bb b
self.send_command(Command::LUT_BLACK_TO_BLACK)?;
self.send_multiple_data(lut_bb)?;
Ok(())
}
/// Basic function for sending [Commands](Command).
///
/// Enables direct interaction with the device with the help of [EPD4in2::send_data()](EPD4in2::send_data())
/// Should rarely be needed!
/// //TODO: make public?
fn send_command(&mut self, command: Command) -> Result<(), E> {
// low for commands
self.dc.set_low();
// Transfer the command over spi
self.with_cs(|epd| {
epd.spi.write(&[command.addr()])
})
}
/// Basic function for sending a single u8 of data over spi
///
/// Enables direct interaction with the device with the help of [EPD4in2::send_command()](EPD4in2::send_command())
///
/// Should rarely be needed!
/// //TODO: make public?
fn send_data(&mut self, val: u8) -> Result<(), E> {
// high for data
self.dc.set_high();
// Transfer data (u8) over spi
self.with_cs(|epd| {
epd.spi.write(&[val])
})
}
/// Basic function for sending an array of u8-values of data over spi
///
/// Enables direct interaction with the device with the help of [EPD4in2::send_command()](EPD4in2::send_command())
///
/// Should rarely be needed!
/// //TODO: make public?
fn send_multiple_data(&mut self, data: &[u8]) -> Result<(), E> {
// high for data
self.dc.set_high();
// Transfer data (u8-array) over spi
self.with_cs(|epd| {
epd.spi.write(data)
})
}
// spi write helper/abstraction function
fn with_cs<F>(&mut self, f: F) -> Result<(), E>
where
F: FnOnce(&mut Self) -> Result<(), E>,
{
// activate spi with cs low
self.cs.set_low();
// transfer spi data
let result = f(self);
// deativate spi with cs high
self.cs.set_high();
// return result
result
}
/// Waits until device isn't busy anymore (busy == HIGH)
///
/// This is normally handled by the more complicated commands themselves,
/// but in the case you send data and commands directly you might need to check
/// if the device is still busy
pub fn wait_until_idle(&mut self) {
//low: busy, high: idle
while self.busy.is_low() {
//TODO: shorten the time? it was 100 in the beginning
self.delay_ms(10);
}
}
/// Abstraction of setting the delay for simpler calls
pub fn delay_ms(&mut self, delay: u16) {
self.delay.delay_ms(delay);
}
}
Loading…
Cancel
Save