You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
452 lines
10 KiB
452 lines
10 KiB
// -*- mode: c++; -*-
|
|
//
|
|
// Startracker drives a NEMA17 for compensating the earth rotation
|
|
// during long exposure photography. Original code based on JjRobots
|
|
// (see below), but everything has been rewritten since the begining
|
|
// of this project.
|
|
//
|
|
// This was tested with an arduino nano.
|
|
// Board wiring (and PCB) are available along with this code.
|
|
// See https://framagit.org/marc/startracker
|
|
//
|
|
// Initial header :
|
|
// STARTRACKER MOTOR CONTROL: STEPPER MOTOR CONTROL FOR JJROBOTS POV DISPLAY
|
|
// This code is designed for JJROBOTS arDusplay Stepper Motor Control board
|
|
// Author: JJROBOTS.COM (Jose Julio & Juan Pedro)
|
|
// Licence: GNU GPL
|
|
// Stepper : NEMA17
|
|
// Driver : A4988 or DRV8825
|
|
// Microstepping : configured to 1/16
|
|
// Arduino board: Pro micro (leonardo equivalent)
|
|
|
|
#include <DRV8825.h>
|
|
|
|
#include "config.h"
|
|
|
|
// using a 200-step motor (most common)
|
|
// pins used are DIR, STEP, MS1, MS2, MS3 in that order
|
|
DRV8825 stepper(200, dir_pin, step_pin,
|
|
enable_pin,
|
|
m0_pin, m1_pin, m2_pin);
|
|
|
|
#include <Switch.h>
|
|
|
|
#if DEBUG
|
|
#define dprint(x) Serial.println(x)
|
|
#else
|
|
#define dprint(x)
|
|
#endif
|
|
|
|
#if WEAK_DEBUG
|
|
#define dwprint(x) Serial.println(x)
|
|
#else
|
|
#define dwprint(x)
|
|
#endif
|
|
|
|
#if MODERATE_DEBUG
|
|
#define mprint(x) Serial.println(x)
|
|
#else
|
|
#define mprint(x)
|
|
#endif
|
|
|
|
//other info needed:
|
|
//ratio between the large gear and the small one=0.2549
|
|
|
|
// Science here !
|
|
#include "teeth_config.h"
|
|
|
|
static const float nr_teeth_small = CONFIG_TEETH_SMALL; // 13.0
|
|
static const float nr_teeth_big = CONFIG_TEETH_BIG; // 51.0
|
|
|
|
// Use immediate value. Using symbolic values leads to incorrect value.
|
|
static const float earth_rot_speed_rad_msec = 7.272205e-8; //2*PI / (1440*60);
|
|
|
|
//static const float coef = 2*PI*axis_hinge_dist_mm * nr_teeth_big / (bolt_thread_mm * nr_teeth_small);
|
|
|
|
static const unsigned int microstepping_div = 32;
|
|
static const unsigned int nr_steps = 200 * microstepping_div;
|
|
|
|
static const float stepper_gear_rad_per_step = (2*PI) / nr_steps;
|
|
|
|
#if MODERATE_DEBUG || DEBUG
|
|
static unsigned int loop_count = 0;
|
|
#endif
|
|
|
|
// this needs to be reset
|
|
static struct rot_state_t {
|
|
unsigned long elapsed_time_millis;
|
|
float stepper_gear_rot_rad = 0;
|
|
} rot_state;
|
|
|
|
static void init_rot_state(struct rot_state_t *state) {
|
|
rot_state.stepper_gear_rot_rad = 0;
|
|
rot_state.elapsed_time_millis = atan(initial_rod_deploy / axis_hinge_dist_mm);
|
|
}
|
|
|
|
static const unsigned int btn1_pin = 8;
|
|
Switch button1Switch = Switch(btn1_pin);
|
|
|
|
// static const unsigned int btn2_pin = 5;
|
|
// static const unsigned int btn3_pin = 6;
|
|
static const unsigned int end_stop_pin = 10;
|
|
|
|
#define ENABLE_LED_BLINK (0)
|
|
|
|
#define USE_ACTIVE_WAIT (1)
|
|
static const int use_active_wait = USE_ACTIVE_WAIT;
|
|
static const long active_threshold = 10;
|
|
|
|
static struct {
|
|
unsigned long period;
|
|
unsigned long deadline;
|
|
unsigned long remain;
|
|
unsigned int expired;
|
|
} active_timer;
|
|
|
|
static unsigned long global_period_msec = 100;//(2*60+51)*1000;
|
|
|
|
static enum control_state_e {
|
|
STARTUP = -1,
|
|
IDLE = 0,
|
|
RUN = 1,
|
|
RUN_OR_RESET = 2,
|
|
RESET_POSITION = 3,
|
|
} control_state = STARTUP;
|
|
|
|
#define DUMP(v) do { \
|
|
Serial.print(#v " "); \
|
|
Serial.println(v, 10); \
|
|
} while(0)
|
|
|
|
#if DEBUG || MODERATE_DEBUG
|
|
static void debug_long(rot_state_t *s){
|
|
const unsigned long ellapsed_in_msec = s->elapsed_time_millis;
|
|
DUMP(ellapsed_in_msec);
|
|
DUMP(earth_rot_speed_rad_msec);
|
|
DUMP(axis_hinge_dist_mm);
|
|
DUMP(nr_teeth_big);
|
|
DUMP(nr_teeth_small);
|
|
DUMP(bolt_thread_mm);
|
|
DUMP(PI);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
// Returns the value in radian the motor should have turned to reach
|
|
// the current value of earth rotation since the beggining.
|
|
static float
|
|
get_expected_stepper_rot(rot_state_t *s)
|
|
{
|
|
float a = earth_rot_speed_rad_msec * s->elapsed_time_millis /* ellapsed_in_sec */;
|
|
if (!hinge_opening)
|
|
a = 1.57079632679 /* PI/2 */ - a;
|
|
|
|
const float r = tan(a)
|
|
* axis_hinge_dist_mm
|
|
* 2 * PI
|
|
* nr_teeth_big
|
|
/ (bolt_thread_mm * nr_teeth_small);
|
|
|
|
#if DEBUG || MODERATE_DEBUG
|
|
|
|
#if MODERATE_DEBUG
|
|
if (!(loop_count % 100)) {
|
|
#endif
|
|
debug_long(s);
|
|
|
|
Serial.print("Angle final: ");
|
|
Serial.println(r);
|
|
|
|
#if MODERATE_DEBUG
|
|
}
|
|
#endif /* MODERATE_DEBUG */
|
|
#endif /* DEBUG */
|
|
return r;
|
|
}
|
|
|
|
// Returns the number of steps and the direction needed to reach given
|
|
// rotation angle in radian.
|
|
|
|
static int
|
|
get_step_number(rot_state_t *s, float expected_rotation)
|
|
{
|
|
const float angle_diff = expected_rotation - s->stepper_gear_rot_rad;
|
|
const float fsteps = angle_diff / stepper_gear_rad_per_step;
|
|
const int steps = floor(fsteps);
|
|
|
|
#if DEBUG
|
|
Serial.print("current rot:");
|
|
Serial.println(s->stepper_gear_rot_rad, 6);
|
|
Serial.print("diff :");
|
|
Serial.print(angle_diff, 6);
|
|
Serial.print(" needed steps : ");
|
|
Serial.print(steps);
|
|
Serial.print(" with fsteps: ");
|
|
Serial.println(fsteps);
|
|
|
|
const float round_per_minutes = (60000/global_period_msec)*fsteps*stepper_gear_rad_per_step;
|
|
Serial.print("RAD per minutes (stepper) : ");
|
|
Serial.println(round_per_minutes, 6);
|
|
const float round_per_minutes_drive = round_per_minutes * (nr_teeth_small / nr_teeth_big);
|
|
Serial.print("RAD per minutes (drive) : ");
|
|
Serial.println(round_per_minutes_drive, 6);
|
|
#endif
|
|
return steps;
|
|
}
|
|
|
|
// Make the motor move to desired angle
|
|
static void
|
|
set_stepper_rotation(rot_state_t *s, float angle)
|
|
{
|
|
const int needed_steps = get_step_number(s, angle);
|
|
if (stepper_direction) {
|
|
stepper.move(needed_steps);
|
|
} else {
|
|
stepper.move(-needed_steps);
|
|
}
|
|
|
|
s->stepper_gear_rot_rad += needed_steps * stepper_gear_rad_per_step;
|
|
}
|
|
|
|
static void
|
|
start_timer(unsigned long period)
|
|
{
|
|
#if DEBUG
|
|
Serial.println("start timer");
|
|
#endif
|
|
|
|
if (use_active_wait) {
|
|
// be careful: remain is signed and period is unsigned.
|
|
active_timer.period = active_timer.remain = period;
|
|
active_timer.deadline = millis() + period;
|
|
}
|
|
|
|
#if DEBUG == 2
|
|
Serial.print("Start Timer: ");
|
|
Serial.println(active_timer.remain);
|
|
#endif
|
|
|
|
}
|
|
|
|
static void
|
|
stop_timer(void)
|
|
{
|
|
if (use_active_wait){
|
|
active_timer.deadline = active_timer.remain = 0;
|
|
}
|
|
|
|
//disable timer interrupt
|
|
// disable timer
|
|
}
|
|
|
|
static void
|
|
handle_active_timer(void)
|
|
{
|
|
|
|
#if DEBUG == 2
|
|
Serial.print("Timer: ");
|
|
Serial.println(active_timer.remain);
|
|
#endif
|
|
unsigned long current_time = millis();
|
|
|
|
if (active_timer.deadline){
|
|
active_timer.remain = active_timer.deadline - current_time;
|
|
if (active_timer.remain > active_timer.deadline) {
|
|
// unsigned underflow
|
|
active_timer.remain = 0;
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
if (active_timer.remain <= active_threshold) {
|
|
active_timer.remain = active_timer.period;
|
|
active_timer.deadline = current_time + active_timer.period;
|
|
active_timer.expired++;
|
|
|
|
#if DEBUG || MODERATE_DEBUG
|
|
loop_count++;
|
|
#endif
|
|
|
|
#if DEBUG
|
|
Serial.println("Timer expired");
|
|
Serial.println(active_timer.expired);
|
|
Serial.println(active_timer.remain);
|
|
Serial.println(loop_count);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if WEAK_DEBUG
|
|
static bool new_state = true;
|
|
|
|
#define STATE(name) \
|
|
if (new_state) { \
|
|
Serial.print("ENTERING STATE: "); \
|
|
Serial.println(#name); \
|
|
new_state = false; \
|
|
}
|
|
#define NEXT_STATE(name) \
|
|
do { \
|
|
new_state = true; \
|
|
control_state = name; \
|
|
} while(0)
|
|
|
|
#else
|
|
#define STATE(name)
|
|
#define NEXT_STATE(name) \
|
|
control_state = name;
|
|
|
|
#endif
|
|
|
|
static void
|
|
control_automata(void)
|
|
{
|
|
|
|
#if DEBUG == 2
|
|
Serial.println("Automata step...");
|
|
#endif
|
|
|
|
button1Switch.poll();
|
|
|
|
switch(control_state){
|
|
case STARTUP: // Should happen only once
|
|
STATE(STARTUP);
|
|
NEXT_STATE(IDLE);
|
|
break;
|
|
|
|
case IDLE:
|
|
STATE(IDLE);
|
|
if (button1Switch.pushed()) {
|
|
NEXT_STATE(RUN_OR_RESET);
|
|
dwprint("Pushed: IDLE => RUN_OR_RESET");
|
|
}
|
|
|
|
break;
|
|
|
|
case RUN_OR_RESET: {
|
|
STATE(RUN_OR_RESET);
|
|
unsigned long reset_delay = millis() + 500;
|
|
NEXT_STATE(RUN);
|
|
|
|
// stepper will be used in both exit states
|
|
stepper.enable();
|
|
|
|
while(millis() < reset_delay) {
|
|
button1Switch.poll();
|
|
|
|
if (button1Switch.pushed()) {
|
|
NEXT_STATE(RESET_POSITION);
|
|
dwprint("Pushed RUN_OR_RESET => RESET_POSITION");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (control_state == RUN) { // means not pushed during waiting time
|
|
dwprint("NOT Pushed RUN_OR_RESET => RUN");
|
|
start_timer(global_period_msec);
|
|
}
|
|
break;
|
|
}
|
|
case RUN:
|
|
STATE(RUN);
|
|
if (button1Switch.pushed()) {
|
|
dwprint("Short press RUN => IDLE");
|
|
stop_timer();
|
|
stepper.disable();
|
|
NEXT_STATE(IDLE);
|
|
} else if (active_timer.expired) {
|
|
active_timer.expired--;
|
|
// emit_motor_step();
|
|
// step_motor();
|
|
rot_state.elapsed_time_millis += active_timer.period;
|
|
const float expected_rot = get_expected_stepper_rot(&rot_state);
|
|
set_stepper_rotation(&rot_state, expected_rot);
|
|
|
|
#if ENABLE_LED_BLINK
|
|
blink_led();
|
|
#endif
|
|
}
|
|
|
|
break;
|
|
|
|
case RESET_POSITION: {
|
|
STATE(RESET_POSITION);
|
|
unsigned long debounce_reset = millis();
|
|
int reset_done = 0;
|
|
|
|
while(!reset_done) {
|
|
if (stepper_direction) {
|
|
stepper.move(-1);
|
|
} else {
|
|
stepper.move(1);
|
|
}
|
|
|
|
int level = digitalRead(end_stop_pin);
|
|
if ( level == HIGH) {
|
|
debounce_reset = millis();
|
|
} else {
|
|
if (millis() - debounce_reset > 50) {
|
|
reset_done = 1;
|
|
}
|
|
}
|
|
}
|
|
init_rot_state(&rot_state);
|
|
NEXT_STATE(IDLE);
|
|
stepper.disable();
|
|
dwprint("Finished RESET, => IDLE");
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if DEBUG == 2
|
|
Serial.println("End of Automata step...");
|
|
#endif
|
|
|
|
}
|
|
|
|
void
|
|
setup()
|
|
{
|
|
// debug output
|
|
Serial.begin(serial_speed);
|
|
|
|
dwprint("Serial setup");
|
|
|
|
// Set target motor RPM to 1RPM
|
|
stepper.setRPM(30);
|
|
// Set full speed mode (microstepping also works for smoother hand movement
|
|
stepper.setMicrostep(microstepping_div);
|
|
dwprint("Microstepping is");
|
|
dwprint(microstepping_div);
|
|
|
|
stepper.disable();
|
|
|
|
// Setup PIN as GPIO output
|
|
pinMode(led_pin, OUTPUT); // LED pin
|
|
|
|
// Button input with pullups enable
|
|
// pinMode(btn1_pin, INPUT);
|
|
// pinMode(btn2_pin, INPUT_PULLUP);
|
|
// pinMode(btn3_pin, INPUT_PULLUP);
|
|
pinMode(end_stop_pin, INPUT_PULLUP);
|
|
|
|
// Initial setup for motor driver
|
|
// digitalWrite(led_pin, HIGH);
|
|
// delay(200); // Initial delay
|
|
// digitalWrite(led_pin, LOW);
|
|
|
|
init_rot_state(&rot_state);
|
|
|
|
dwprint("Setup finished, starting loop");
|
|
}
|
|
|
|
void
|
|
loop(void)
|
|
{
|
|
if (use_active_wait)
|
|
handle_active_timer();
|
|
|
|
control_automata();
|
|
}
|
|
|