You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
stm32f0xx-hal/src/serial.rs

611 lines
17 KiB
Rust

//! API for the integrated USART ports
//!
//! This only implements the usual asynchronous bidirectional 8-bit transfers.
//!
//! It's possible to use a read-only/write-only serial implementation with
//! `usartXrx`/`usartXtx`.
//!
//! # Examples
//! Echo
//! ``` no_run
//! use stm32f0xx_hal as hal;
//!
//! use crate::hal::prelude::*;
//! use crate::hal::serial::Serial;
//! use crate::hal::stm32;
//!
//! use nb::block;
//!
//! cortex_m::interrupt::free(|cs| {
//! let rcc = p.RCC.configure().sysclk(48.mhz()).freeze();
//!
//! let gpioa = p.GPIOA.split(&mut rcc);
//!
//! let tx = gpioa.pa9.into_alternate_af1(cs);
//! let rx = gpioa.pa10.into_alternate_af1(cs);
//!
//! let mut serial = Serial::usart1(p.USART1, (tx, rx), 115_200.bps(), &mut rcc);
//!
//! loop {
//! let received = block!(serial.read()).unwrap();
//! block!(serial.write(received)).ok();
//! }
//! });
//! ```
//!
//! Hello World
//! ``` no_run
//! use stm32f0xx_hal as hal;
//!
//! use crate::hal::prelude::*;
//! use crate::hal::serial::Serial;
//! use crate::hal::stm32;
//!
//! use nb::block;
//!
//! cortex_m::interrupt::free(|cs| {
//! let rcc = p.RCC.configure().sysclk(48.mhz()).freeze();
//!
//! let gpioa = p.GPIOA.split(&mut rcc);
//!
//! let tx = gpioa.pa9.into_alternate_af1(cs);
//!
//! let mut serial = Serial::usart1tx(p.USART1, tx, 115_200.bps(), &mut rcc);
//!
//! loop {
//! serial.write_str("Hello World!\r\n");
//! }
//! });
//! ```
use core::{
fmt::{Result, Write},
ops::Deref,
ptr,
};
use embedded_hal::prelude::*;
use crate::{gpio::*, rcc::Rcc, time::Bps};
use core::marker::PhantomData;
/// Serial error
#[derive(Debug)]
pub enum Error {
/// Framing error
Framing,
/// Noise error
Noise,
/// RX buffer overrun
Overrun,
/// Parity check error
Parity,
#[doc(hidden)]
_Extensible,
}
/// Interrupt event
pub enum Event {
/// New data has been received
Rxne,
/// New data can be sent
Txe,
/// Idle line state detected
Idle,
}
pub trait TxPin<USART> {}
pub trait RxPin<USART> {}
macro_rules! usart_pins {
($($USART:ident => {
tx => [$($tx:ty),+ $(,)*],
rx => [$($rx:ty),+ $(,)*],
})+) => {
$(
$(
impl TxPin<crate::stm32::$USART> for $tx {}
)+
$(
impl RxPin<crate::stm32::$USART> for $rx {}
)+
)+
}
}
#[cfg(any(
feature = "stm32f030",
feature = "stm32f031",
feature = "stm32f038",
feature = "stm32f042",
feature = "stm32f048",
feature = "stm32f051",
feature = "stm32f058",
feature = "stm32f070",
feature = "stm32f071",
feature = "stm32f072",
feature = "stm32f078",
feature = "stm32f091",
feature = "stm32f098",
))]
usart_pins! {
USART1 => {
tx => [gpioa::PA9<Alternate<AF1>>, gpiob::PB6<Alternate<AF0>>],
rx => [gpioa::PA10<Alternate<AF1>>, gpiob::PB7<Alternate<AF0>>],
}
}
#[cfg(any(
feature = "stm32f030x4",
feature = "stm32f030x6",
feature = "stm32f031",
feature = "stm32f038",
))]
usart_pins! {
USART1 => {
tx => [gpioa::PA2<Alternate<AF1>>, gpioa::PA14<Alternate<AF1>>],
rx => [gpioa::PA3<Alternate<AF1>>, gpioa::PA15<Alternate<AF1>>],
}
}
#[cfg(any(
feature = "stm32f030x8",
feature = "stm32f030xc",
feature = "stm32f042",
feature = "stm32f048",
feature = "stm32f051",
feature = "stm32f058",
feature = "stm32f070",
feature = "stm32f071",
feature = "stm32f072",
feature = "stm32f078",
feature = "stm32f091",
feature = "stm32f098",
))]
usart_pins! {
USART2 => {
tx => [gpioa::PA2<Alternate<AF1>>, gpioa::PA14<Alternate<AF1>>],
rx => [gpioa::PA3<Alternate<AF1>>, gpioa::PA15<Alternate<AF1>>],
}
}
#[cfg(any(
feature = "stm32f071",
feature = "stm32f072",
feature = "stm32f078",
feature = "stm32f091",
feature = "stm32f098",
))]
usart_pins! {
USART2 => {
tx => [gpiod::PD5<Alternate<AF0>>],
rx => [gpiod::PD6<Alternate<AF0>>],
}
}
#[cfg(any(
feature = "stm32f030xc",
feature = "stm32f070xb",
feature = "stm32f071",
feature = "stm32f072",
feature = "stm32f078",
feature = "stm32f091",
feature = "stm32f098",
))]
usart_pins! {
USART3 => {
// According to the datasheet PB10 is both tx and rx, but in stm32cubemx it's only tx
tx => [gpiob::PB10<Alternate<AF4>>, gpioc::PC4<Alternate<AF1>>, gpioc::PC10<Alternate<AF1>>],
rx => [gpiob::PB11<Alternate<AF4>>, gpioc::PC5<Alternate<AF1>>, gpioc::PC11<Alternate<AF1>>],
}
USART4 => {
tx => [gpioa::PA0<Alternate<AF4>>, gpioc::PC10<Alternate<AF0>>],
rx => [gpioa::PA1<Alternate<AF4>>, gpioc::PC11<Alternate<AF0>>],
}
}
#[cfg(any(
feature = "stm32f071",
feature = "stm32f072",
feature = "stm32f078",
feature = "stm32f091",
feature = "stm32f098",
))]
usart_pins! {
USART3 => {
tx => [gpiod::PD8<Alternate<AF0>>],
rx => [gpiod::PD9<Alternate<AF0>>],
}
}
// TODO: The ST SVD files are missing the entire PE enable register.
// Re-enable as soon as this gets fixed.
// #[cfg(any(feature = "stm32f091", feature = "stm32f098"))]
// usart_pins! {
// USART4 => {
// tx => [gpioe::PE8<Alternate<AF1>>],
// rx => [gpioe::PE9<Alternate<AF1>>],
// }
// }
#[cfg(any(feature = "stm32f030xc", feature = "stm32f091", feature = "stm32f098"))]
usart_pins! {
USART5 => {
tx => [gpioc::PC12<Alternate<AF2>>],
rx => [gpiod::PD2<Alternate<AF2>>],
}
USART6 => {
tx => [gpioa::PA4<Alternate<AF5>>, gpioc::PC0<Alternate<AF2>>],
rx => [gpioa::PA5<Alternate<AF5>>, gpioc::PC1<Alternate<AF2>>],
}
}
#[cfg(any(feature = "stm32f030xc", feature = "stm32f091"))]
usart_pins! {
USART5 => {
tx => [gpiob::PB3<Alternate<AF4>>],
rx => [gpiob::PB4<Alternate<AF4>>],
}
}
// TODO: The ST SVD files are missing the entire PE enable register.
// Re-enable as soon as this gets fixed.
#[cfg(any(feature = "stm32f091", feature = "stm32f098"))]
usart_pins! {
// USART5 => {
// tx => [gpioe::PE10<Alternate<AF1>>],
// rx => [gpioe::PE11<Alternate<AF1>>],
// }
USART6 => {
tx => [gpiof::PF9<Alternate<AF1>>],
rx => [gpiof::PF10<Alternate<AF1>>],
}
}
/// Serial abstraction
pub struct Serial<USART, TXPIN, RXPIN> {
usart: USART,
pins: (TXPIN, RXPIN),
}
// Common register
type SerialRegisterBlock = crate::stm32::usart1::RegisterBlock;
/// Serial receiver
pub struct Rx<USART> {
usart: *const SerialRegisterBlock,
_instance: PhantomData<USART>,
}
// NOTE(unsafe) Required to allow protected shared access in handlers
unsafe impl<USART> Send for Rx<USART> {}
/// Serial transmitter
pub struct Tx<USART> {
usart: *const SerialRegisterBlock,
_instance: PhantomData<USART>,
}
// NOTE(unsafe) Required to allow protected shared access in handlers
unsafe impl<USART> Send for Tx<USART> {}
macro_rules! usart {
($($USART:ident: ($usart:ident, $usarttx:ident, $usartrx:ident, $usartXen:ident, $apbenr:ident),)+) => {
$(
use crate::stm32::$USART;
impl<TXPIN, RXPIN> Serial<$USART, TXPIN, RXPIN>
where
TXPIN: TxPin<$USART>,
RXPIN: RxPin<$USART>,
{
/// Creates a new serial instance
pub fn $usart(usart: $USART, pins: (TXPIN, RXPIN), baud_rate: Bps, rcc: &mut Rcc) -> Self
{
let mut serial = Serial { usart, pins };
serial.configure(baud_rate, rcc);
// Enable transmission and receiving
serial.usart.cr1.modify(|_, w| w.te().set_bit().re().set_bit().ue().set_bit());
serial
}
}
impl<TXPIN> Serial<$USART, TXPIN, ()>
where
TXPIN: TxPin<$USART>,
{
/// Creates a new tx-only serial instance
pub fn $usarttx(usart: $USART, txpin: TXPIN, baud_rate: Bps, rcc: &mut Rcc) -> Self
{
let rxpin = ();
let mut serial = Serial { usart, pins: (txpin, rxpin) };
serial.configure(baud_rate, rcc);
// Enable transmission
serial.usart.cr1.modify(|_, w| w.te().set_bit().ue().set_bit());
serial
}
}
impl<RXPIN> Serial<$USART, (), RXPIN>
where
RXPIN: RxPin<$USART>,
{
/// Creates a new tx-only serial instance
pub fn $usartrx(usart: $USART, rxpin: RXPIN, baud_rate: Bps, rcc: &mut Rcc) -> Self
{
let txpin = ();
let mut serial = Serial { usart, pins: (txpin, rxpin) };
serial.configure(baud_rate, rcc);
// Enable receiving
serial.usart.cr1.modify(|_, w| w.re().set_bit().ue().set_bit());
serial
}
}
impl<TXPIN, RXPIN> Serial<$USART, TXPIN, RXPIN> {
fn configure(&mut self, baud_rate: Bps, rcc: &mut Rcc) {
// Enable clock for USART
rcc.regs.$apbenr.modify(|_, w| w.$usartXen().set_bit());
// Calculate correct baudrate divisor on the fly
let brr = rcc.clocks.pclk().0 / baud_rate.0;
self.usart.brr.write(|w| unsafe { w.bits(brr) });
// Reset other registers to disable advanced USART features
self.usart.cr2.reset();
self.usart.cr3.reset();
}
/// Starts listening for an interrupt event
pub fn listen(&mut self, event: Event) {
match event {
Event::Rxne => {
self.usart.cr1.modify(|_, w| w.rxneie().set_bit())
},
Event::Txe => {
self.usart.cr1.modify(|_, w| w.txeie().set_bit())
},
Event::Idle => {
self.usart.cr1.modify(|_, w| w.idleie().set_bit())
},
}
}
/// Stop listening for an interrupt event
pub fn unlisten(&mut self, event: Event) {
match event {
Event::Rxne => {
self.usart.cr1.modify(|_, w| w.rxneie().clear_bit())
},
Event::Txe => {
self.usart.cr1.modify(|_, w| w.txeie().clear_bit())
},
Event::Idle => {
self.usart.cr1.modify(|_, w| w.idleie().clear_bit())
},
}
}
}
)+
}
}
usart! {
USART1: (usart1, usart1tx, usart1rx, usart1en, apb2enr),
}
#[cfg(any(
feature = "stm32f030x8",
feature = "stm32f030xc",
feature = "stm32f042",
feature = "stm32f048",
feature = "stm32f051",
feature = "stm32f058",
feature = "stm32f070",
feature = "stm32f071",
feature = "stm32f072",
feature = "stm32f078",
feature = "stm32f091",
feature = "stm32f098",
))]
usart! {
USART2: (usart2, usart2tx, usart2rx,usart2en, apb1enr),
}
#[cfg(any(
feature = "stm32f030xc",
feature = "stm32f070xb",
feature = "stm32f071",
feature = "stm32f072",
feature = "stm32f078",
feature = "stm32f091",
feature = "stm32f098",
))]
usart! {
USART3: (usart3, usart3tx, usart3rx,usart3en, apb1enr),
USART4: (usart4, usart4tx, usart4rx,usart4en, apb1enr),
}
#[cfg(any(feature = "stm32f030xc", feature = "stm32f091", feature = "stm32f098"))]
usart! {
USART5: (usart5, usart5tx, usart5rx,usart5en, apb1enr),
USART6: (usart6, usart6tx, usart6rx,usart6en, apb2enr),
}
impl<USART> embedded_hal::serial::Read<u8> for Rx<USART>
where
USART: Deref<Target = SerialRegisterBlock>,
{
type Error = Error;
/// Tries to read a byte from the uart
fn read(&mut self) -> nb::Result<u8, Error> {
read(self.usart)
}
}
impl<USART, TXPIN, RXPIN> embedded_hal::serial::Read<u8> for Serial<USART, TXPIN, RXPIN>
where
USART: Deref<Target = SerialRegisterBlock>,
RXPIN: RxPin<USART>,
{
type Error = Error;
/// Tries to read a byte from the uart
fn read(&mut self) -> nb::Result<u8, Error> {
read(&*self.usart)
}
}
impl<USART> embedded_hal::serial::Write<u8> for Tx<USART>
where
USART: Deref<Target = SerialRegisterBlock>,
{
type Error = void::Void;
/// Ensures that none of the previously written words are still buffered
fn flush(&mut self) -> nb::Result<(), Self::Error> {
flush(self.usart)
}
/// Tries to write a byte to the uart
/// Fails if the transmit buffer is full
fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
write(self.usart, byte)
}
}
impl<USART, TXPIN, RXPIN> embedded_hal::serial::Write<u8> for Serial<USART, TXPIN, RXPIN>
where
USART: Deref<Target = SerialRegisterBlock>,
TXPIN: TxPin<USART>,
{
type Error = void::Void;
/// Ensures that none of the previously written words are still buffered
fn flush(&mut self) -> nb::Result<(), Self::Error> {
flush(&*self.usart)
}
/// Tries to write a byte to the uart
/// Fails if the transmit buffer is full
fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error> {
write(&*self.usart, byte)
}
}
impl<USART, TXPIN, RXPIN> Serial<USART, TXPIN, RXPIN>
where
USART: Deref<Target = SerialRegisterBlock>,
{
/// Splits the UART Peripheral in a Tx and an Rx part
/// This is required for sending/receiving
pub fn split(self) -> (Tx<USART>, Rx<USART>)
where
TXPIN: TxPin<USART>,
RXPIN: RxPin<USART>,
{
(
Tx {
usart: &*self.usart,
_instance: PhantomData,
},
Rx {
usart: &*self.usart,
_instance: PhantomData,
},
)
}
pub fn release(self) -> (USART, (TXPIN, RXPIN)) {
(self.usart, self.pins)
}
}
impl<USART> Write for Tx<USART>
where
Tx<USART>: embedded_hal::serial::Write<u8>,
{
fn write_str(&mut self, s: &str) -> Result {
s.as_bytes()
.iter()
.try_for_each(|c| nb::block!(self.write(*c)))
.map_err(|_| core::fmt::Error)
}
}
impl<USART, TXPIN, RXPIN> Write for Serial<USART, TXPIN, RXPIN>
where
USART: Deref<Target = SerialRegisterBlock>,
TXPIN: TxPin<USART>,
{
fn write_str(&mut self, s: &str) -> Result {
s.as_bytes()
.iter()
.try_for_each(|c| nb::block!(self.write(*c)))
.map_err(|_| core::fmt::Error)
}
}
/// Ensures that none of the previously written words are still buffered
fn flush(usart: *const SerialRegisterBlock) -> nb::Result<(), void::Void> {
// NOTE(unsafe) atomic read with no side effects
let isr = unsafe { (*usart).isr.read() };
if isr.tc().bit_is_set() {
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
/// Tries to write a byte to the UART
/// Fails if the transmit buffer is full
fn write(usart: *const SerialRegisterBlock, byte: u8) -> nb::Result<(), void::Void> {
// NOTE(unsafe) atomic read with no side effects
let isr = unsafe { (*usart).isr.read() };
if isr.txe().bit_is_set() {
// NOTE(unsafe) atomic write to stateless register
// NOTE(write_volatile) 8-bit write that's not possible through the svd2rust API
unsafe { ptr::write_volatile(&(*usart).tdr as *const _ as *mut _, byte) }
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
/// Tries to read a byte from the UART
fn read(usart: *const SerialRegisterBlock) -> nb::Result<u8, Error> {
// NOTE(unsafe) atomic read with no side effects
let isr = unsafe { (*usart).isr.read() };
// NOTE(unsafe) write accessor for atomic writes with no side effects
let icr = unsafe { &(*usart).icr };
let err = if isr.pe().bit_is_set() {
icr.write(|w| w.pecf().set_bit());
nb::Error::Other(Error::Parity)
} else if isr.fe().bit_is_set() {
icr.write(|w| w.fecf().set_bit());
nb::Error::Other(Error::Framing)
} else if isr.nf().bit_is_set() {
icr.write(|w| w.ncf().set_bit());
nb::Error::Other(Error::Noise)
} else if isr.ore().bit_is_set() {
icr.write(|w| w.orecf().set_bit());
nb::Error::Other(Error::Overrun)
} else if isr.rxne().bit_is_set() {
return Ok(unsafe { ptr::read_volatile(&(*usart).rdr as *const _ as *const _) });
} else {
return Err(nb::Error::WouldBlock);
};
// NOTE(unsafe) atomic write with no side effects other than clearing the errors we've just handled
unsafe {
(*usart).icr.write(|w| {
w.pecf()
.set_bit()
.fecf()
.set_bit()
.ncf()
.set_bit()
.orecf()
.set_bit()
})
};
Err(err)
}