You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
stm32f0xx-hal/src/rcc.rs

293 lines
8.0 KiB
Rust

use crate::time::Hertz;
/// Extension trait that constrains the `RCC` peripheral
pub trait RccExt {
/// Constrains the `RCC` peripheral so it plays nicely with the other abstractions
fn constrain(self) -> Rcc;
}
#[cfg(feature = "device-selected")]
impl RccExt for crate::stm32::RCC {
fn constrain(self) -> Rcc {
Rcc {
cfgr: CFGR {
hclk: None,
pclk: None,
sysclk: None,
enable_hsi: true,
enable_hsi48: false,
},
}
}
}
/// Constrained RCC peripheral
pub struct Rcc {
pub cfgr: CFGR,
}
#[allow(unused)]
const HSI: u32 = 8_000_000; // Hz
#[allow(unused)]
const HSI48: u32 = 48_000_000; // Hz - (available on STM32F04x, STM32F07x and STM32F09x devices only)
#[allow(unused)]
enum SysClkSource {
HSI = 0b00,
HSE = 0b01,
PLL = 0b10,
HSI48 = 0b11,
}
#[allow(unused)]
enum PllSource {
HSI_DIV2 = 0b00,
HSI = 0b01,
HSE = 0b10,
HSI48 = 0b11,
}
#[allow(unused)]
pub struct CFGR {
hclk: Option<u32>,
pclk: Option<u32>,
sysclk: Option<u32>,
enable_hsi: bool,
enable_hsi48: bool,
}
#[cfg(feature = "device-selected")]
impl CFGR {
pub fn hclk<F>(mut self, freq: F) -> Self
where
F: Into<Hertz>,
{
self.hclk = Some(freq.into().0);
self
}
pub fn pclk<F>(mut self, freq: F) -> Self
where
F: Into<Hertz>,
{
self.pclk = Some(freq.into().0);
self
}
pub fn sysclk<F>(mut self, freq: F) -> Self
where
F: Into<Hertz>,
{
self.sysclk = Some(freq.into().0);
self
}
pub fn enable_hsi(mut self, is_enabled: bool) -> Self {
self.enable_hsi = is_enabled;
self
}
#[cfg(feature = "stm32f042")]
pub fn enable_hsi48(mut self, is_enabled: bool) -> Self {
self.enable_hsi48 = is_enabled;
self
}
pub fn freeze(self) -> Clocks {
// Default to lowest frequency clock on all systems.
let sysclk = self.sysclk.unwrap_or(HSI);
let r_sysclk; // The "real" sysclock value, calculated below
let src_clk_freq; // Frequency of source clock for PLL and etc, HSI, or HSI48 on supported systems.
let pllmul_bits;
// Select clock source based on user input and capability
// Highest selected frequency source available takes precedent.
// For F04x, F07x, F09x parts, use HSI48 if requested.
if self.enable_hsi48 {
src_clk_freq = HSI48; // Use HSI48 if requested and available.
} else if self.enable_hsi {
src_clk_freq = HSI; // HSI if requested
} else {
src_clk_freq = HSI; // If no clock source is selected use HSI.
}
// Pll check
if sysclk == src_clk_freq {
// Bypass pll if src clk and requested sysclk are the same, to save power.
// The only reason to override this behaviour is if the sysclk source were HSI, and you
// were running the USB off the PLL...
pllmul_bits = None;
r_sysclk = src_clk_freq;
} else {
let pllmul =
(4 * self.sysclk.unwrap_or(src_clk_freq) + src_clk_freq) / src_clk_freq / 2;
let pllmul = core::cmp::min(core::cmp::max(pllmul, 2), 16);
r_sysclk = pllmul * src_clk_freq / 2;
pllmul_bits = if pllmul == 2 {
None
} else {
Some(pllmul as u8 - 2)
};
}
let hpre_bits = self
.hclk
.map(|hclk| match r_sysclk / hclk {
0 => unreachable!(),
1 => 0b0111,
2 => 0b1000,
3...5 => 0b1001,
6...11 => 0b1010,
12...39 => 0b1011,
40...95 => 0b1100,
96...191 => 0b1101,
192...383 => 0b1110,
_ => 0b1111,
})
.unwrap_or(0b0111);
let hclk = sysclk / (1 << (hpre_bits - 0b0111));
let ppre_bits = self
.pclk
.map(|pclk| match hclk / pclk {
0 => unreachable!(),
1 => 0b011,
2 => 0b100,
3...5 => 0b101,
6...11 => 0b110,
_ => 0b111,
})
.unwrap_or(0b011);
let ppre: u8 = 1 << (ppre_bits - 0b011);
let pclk = hclk / cast::u32(ppre);
// adjust flash wait states
unsafe {
let flash = &*crate::stm32::FLASH::ptr();
flash.acr.write(|w| {
w.latency().bits(if sysclk <= 24_000_000 {
0b000
} else if sysclk <= 48_000_000 {
0b001
} else {
0b010
})
})
}
let rcc = unsafe { &*crate::stm32::RCC::ptr() };
// Set up rcc based on above calculated configuration.
// Enable requested clock sources
// HSI
if self.enable_hsi {
rcc.cr.write(|w| w.hsion().set_bit());
while rcc.cr.read().hsirdy().bit_is_clear() {}
}
// HSI48
if self.enable_hsi48 {
rcc.cr2.modify(|_, w| w.hsi48on().set_bit());
while rcc.cr2.read().hsi48rdy().bit_is_clear() {}
}
// Enable PLL
if let Some(pllmul_bits) = pllmul_bits {
rcc.cfgr.write(|w| unsafe { w.pllmul().bits(pllmul_bits) });
// Set PLL source based on configuration.
if self.enable_hsi48 {
rcc.cfgr
.modify(|_, w| w.pllsrc().bits(PllSource::HSI48 as u8));
} else if self.enable_hsi {
rcc.cfgr
.modify(|_, w| w.pllsrc().bits(PllSource::HSI_DIV2 as u8));
} else {
rcc.cfgr
.modify(|_, w| w.pllsrc().bits(PllSource::HSI_DIV2 as u8));
}
rcc.cr.write(|w| w.pllon().set_bit());
while rcc.cr.read().pllrdy().bit_is_clear() {}
rcc.cfgr.modify(|_, w| unsafe {
w.ppre()
.bits(ppre_bits)
.hpre()
.bits(hpre_bits)
.sw()
.bits(SysClkSource::PLL as u8)
});
} else {
// No PLL required.
// Setup requested clocks.
if self.enable_hsi48 {
rcc.cfgr.modify(|_, w| unsafe {
w.ppre()
.bits(ppre_bits)
.hpre()
.bits(hpre_bits)
.sw()
.bits(SysClkSource::HSI48 as u8)
});
} else if self.enable_hsi {
rcc.cfgr.modify(|_, w| unsafe {
w.ppre()
.bits(ppre_bits)
.hpre()
.bits(hpre_bits)
.sw()
.bits(SysClkSource::HSI as u8)
});
} else {
// Default to HSI
rcc.cfgr.modify(|_, w| unsafe {
w.ppre()
.bits(ppre_bits)
.hpre()
.bits(hpre_bits)
.sw()
.bits(SysClkSource::HSI as u8)
});
}
}
Clocks {
hclk: Hertz(hclk),
pclk: Hertz(pclk),
sysclk: Hertz(sysclk),
}
}
}
/// Frozen clock frequencies
///
/// The existence of this value indicates that the clock configuration can no longer be changed
#[derive(Clone, Copy)]
pub struct Clocks {
hclk: Hertz,
pclk: Hertz,
sysclk: Hertz,
}
impl Clocks {
/// Returns the frequency of the AHB
pub fn hclk(&self) -> Hertz {
self.hclk
}
/// Returns the frequency of the APB
pub fn pclk(&self) -> Hertz {
self.pclk
}
/// Returns the system (core) frequency
pub fn sysclk(&self) -> Hertz {
self.sysclk
}
}